×

zbMATH — the first resource for mathematics

Constrained finite rotations in dynamics of shells and Newmark implicit time-stepping schemes. (English) Zbl 1186.74111
Summary: We develop a version of the Newmark time-stepping schemes for the dynamics of smooth shells employing constrained finite rotations. Different possibilities to choose the constrained rotation parameters are discussed, with the special attention given to the preferred choice of the incremental rotation vector.

MSC:
74S20 Finite difference methods applied to problems in solid mechanics
74K25 Shells
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Al Mikdad, M. and Ibrahimbegović, A. (1997), ”Dynamique et schémes d’intégration pour modèles de poutres géométricament exact”,Revue europeenne des elements finis, Vol. 6, pp. 471-502. · Zbl 0923.73074 · doi:10.1080/12506559.1997.10511286
[2] Başar, Y. and Kintzel, O. (2001), ”Finite rotations and large strains in finite element shell analysis”,Comput. Meth. Eng. Sci., Vol. 4, pp. 217-30.
[3] DOI: 10.1016/S0045-7825(97)00158-8 · Zbl 0947.74060 · doi:10.1016/S0045-7825(97)00158-8
[4] DOI: 10.1108/02644400110403984 · Zbl 1017.74069 · doi:10.1108/02644400110403984
[5] DOI: 10.1007/BF00350723 · Zbl 0848.73060 · doi:10.1007/BF00350723
[6] DOI: 10.1002/(SICI)1097-0207(19970228)40:4<689::AID-NME85>3.0.CO;2-7 · Zbl 0892.73055 · doi:10.1002/(SICI)1097-0207(19970228)40:4<689::AID-NME85>3.0.CO;2-7
[7] DOI: 10.1002/(SICI)1097-0207(19980615)42:3<409::AID-NME363>3.0.CO;2-B · Zbl 0926.74071 · doi:10.1002/(SICI)1097-0207(19980615)42:3<409::AID-NME363>3.0.CO;2-B
[8] Briseghella, L., Majorana, C. and Pavan, P. (2001), ”A conservative time integration scheme for dynamics of elasto-damaged thin shells”,Comput. Meth. Eng. Sci., Vol. 4, pp. 273-86. · Zbl 1043.74528
[9] DOI: 10.1002/nme.1620340105 · Zbl 0760.73041 · doi:10.1002/nme.1620340105
[10] DOI: 10.1108/eb023562 · doi:10.1108/eb023562
[11] DOI: 10.1002/nme.1620382107 · Zbl 0835.73074 · doi:10.1002/nme.1620382107
[12] DOI: 10.1016/S0045-7825(97)00059-5 · Zbl 0924.73110 · doi:10.1016/S0045-7825(97)00059-5
[13] DOI: 10.1115/1.3101701 · doi:10.1115/1.3101701
[14] DOI: 10.1002/(SICI)1097-0207(19980315)41:5<781::AID-NME308>3.0.CO;2-9 · Zbl 0902.73045 · doi:10.1002/(SICI)1097-0207(19980315)41:5<781::AID-NME308>3.0.CO;2-9
[15] Ibrahimbegović, A. and Knopf-Lenoir, C. (2001), ”Shape optimization of elastic structural systems undergoing large rotations: simultaneous solution procedure”,Comput. Meth. Eng. Sci., Vol. 4, pp. 337-44. · Zbl 1043.74518
[16] DOI: 10.1002/nme.247 · Zbl 1112.74420 · doi:10.1002/nme.247
[17] DOI: 10.1016/0045-7949(88)90355-0 · Zbl 0666.73044 · doi:10.1016/0045-7949(88)90355-0
[18] DOI: 10.1002/1097-0207(20001230)49:12<1571::AID-NME19>3.0.CO;2-1 · Zbl 0994.74054 · doi:10.1002/1097-0207(20001230)49:12<1571::AID-NME19>3.0.CO;2-1
[19] DOI: 10.1016/0045-7825(89)90002-9 · Zbl 0692.73062 · doi:10.1016/0045-7825(89)90002-9
[20] DOI: 10.1115/1.3171737 · Zbl 0592.73019 · doi:10.1115/1.3171737
[21] DOI: 10.1016/0045-7825(88)90073-4 · Zbl 0618.73100 · doi:10.1016/0045-7825(88)90073-4
[22] DOI: 10.1002/nme.1620371503 · Zbl 0808.73072 · doi:10.1002/nme.1620371503
[23] Suetake, Y., Iura, M. and Atluri, S.N. (2001), ”Variational formulation and symmetric tangent operator for shells with finite rotation field”,Comput. Meth. Eng. Sci., Vol. 4, pp. 329-36. · Zbl 1043.74515
[24] Zupan, D. and Saje, M. (2001), ”A new finite element formulation of three-dimensional beam theory based on interpolation of curvature”,Comput. Meth. Eng. Sci., Vol. 4, pp. 301-18. · Zbl 1043.74526
[25] DOI: 10.1016/0045-7825(90)90094-3 · Zbl 0746.73015 · doi:10.1016/0045-7825(90)90094-3
[26] DOI: 10.1002/nme.1620340108 · Zbl 0760.73045 · doi:10.1002/nme.1620340108
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.