×

zbMATH — the first resource for mathematics

Modal control of multi-input systems of neutral type with retarded argument. (English. Russian original) Zbl 1157.93013
Differ. Equ. 44, No. 11, 1595-1604 (2008); translation from Differ. Uravn. 44, No. 11, 1534-1543 (2008).
Summary: We suggest a special choice of a basis in the linear span of columns of the “controllability matrix” for multi-input systems of neutral type with retarded argument, which permits one to obtain an effective sufficient solvability condition for the modal control problem for such systems. The proof of this condition provides a constructive way for designing the desired regulator by the feedback principle on the basis of the solution of linear algebraic systems over the ring of bivariate polynomials.

MSC:
93B40 Computational methods in systems theory (MSC2010)
92B20 Neural networks for/in biological studies, artificial life and related topics
93C15 Control/observation systems governed by ordinary differential equations
93B05 Controllability
93B52 Feedback control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Letov, A.M., Avtomat. i Telemekh., 1960, no. 4, pp. 436–441; no. 5, pp. 561–568; no. 6, pp. 661–665; 1961, no. 4, pp. 425–435.
[2] Rosenbrock, H.H., Chem. Engrg. Progr., 1962, vol. 58, no. 9, pp. 43–50.
[3] Wonham, W.M., IEEE Trans. Automat. Control, 1967, vol. AC-12, no. 6, pp. 660–665. · doi:10.1109/TAC.1967.1098739
[4] Porter, B. and Grossley, T.R., Modal Control. Theory and Applications, London, 1972.
[5] Kuzovkov, N.T., Modal’noe upravlenie i nablyudayushchie ustroistva (Modal Control and Observing Devices), Moscow, 1976.
[6] Wonham, W.M., Linear Multivariable Control: a Geometric Approach, New York, 1979. · Zbl 0424.93001
[7] Andreev, Yu.N., Avtomat. i Telemekh., 1977, no. 3, pp. 5–50.
[8] Munro, N., Proc. IEE, 1979, vol. 126, no. 6, pp. 519–554.
[9] Krasovskii, N.N. and Osipov, Yu.S., Izv. Akad. Nauk SSSR Tekhn. Kibern., 1963, no. 6, pp. 3–15.
[10] Osipov, Yu.S., Differ. Uravn., 1965, vol. 1, no. 5, pp. 606–618.
[11] Pandolfi, L., J. Optim. Theory Appl., 1976, vol. 20, pp. 191–204. · Zbl 0313.93023 · doi:10.1007/BF01767451
[12] Bulatov, V.I., Kalyuzhnaya, T.S., and Naumovich, R.F., Differ. Uravn., 1974, vol. 10, no. 11, pp. 1946–1952.
[13] Olbrot, A.W., IEEE Trans. Automat. Control, 1978, vol. AC-23, no. 5, pp. 887–890. · Zbl 0399.93008 · doi:10.1109/TAC.1978.1101879
[14] Filimonov, A.B., Avtomat. i Telemekh., 1983, no. 4, pp. 34–42.
[15] Watanabe, K., IEEE Trans. Automat. Control, 1986, vol. AC-31, no. 6, pp. 543–550. · Zbl 0596.93009 · doi:10.1109/TAC.1986.1104336
[16] Morse, A.S., Automatica J. IFAC, 1976, vol. 12, no. 5, pp. 529–531. · Zbl 0345.93023 · doi:10.1016/0005-1098(76)90013-3
[17] Asmykovich, I.K. and Marchenko, V.M., Avtomat. i Telemekh., 1976, no. 7, pp. 5–14.
[18] Asmykovich, I.K. and Marchenko, V.M., Avtomat. i Telemekh., 1980, no. 1, pp. 5–10.
[19] Marchenko, V.M., Dokl. Akad. Nauk BSSR, 1978, no. 5, pp. 401–404.
[20] Marchenko, V.M., Avtomat. i Telemekh., 1988, no. 11, pp. 73–84.
[21] Gabasov, R., Kirillova, F.M., Marchenko, V.M., and Asmykovich, I.K., Problems of Control and Observation for Infinite-Dimensional Systems, Preprint Inst. Mat. Akad. Nauk BSSR, Minsk, 1984, no. 1(186). · Zbl 0548.93036
[22] Marchenko, V.M., Borkovskaya, I.M., and Yakimenko, A.A., 13th World Congress of IFAC. Preprints, vol. D. Intern. Fed. of Aut. Contr., San Francisco, 1996, pp. 441–446.
[23] Marchenko, V.M. and Borkovskaya, I.M., Differ. Uravn., 1993, vol. 29, no. 11, pp. 1928–1936.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.