×

Aerodynamic web forming: process simulation and material properties. (English) Zbl 1370.74050

Summary: In this paper we present a chain of mathematical models that enables the numerical simulation of the airlay process and the investigation of the resulting nonwoven material by means of virtual tensile strength tests. The models range from a highly turbulent dilute fiber suspension flow to stochastic surrogates for fiber lay-down and web formation and further to Cosserat networks with effective material laws. Crucial is the consistent mathematical mapping between the parameters of the process and the material. We illustrate the applicability of the model chain for an industrial scenario, regarding data from computer tomography and experiments. By this proof of concept we show the feasibility of future simulation-based process design and material optimization which are long-term objectives in the technical textile industry.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76T20 Suspensions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albrecht W, Fuchs H, Kittelmann W, editors. Nonwoven fabrics: raw materials, manufacture, applications, characteristics, testing processes. New York: Wiley; 2006.
[2] Wegener, R.; Marheineke, N.; Hietel, D.; Neunzert, H. (ed.); Prätzel-Wolters, D. (ed.), Virtual production of filaments and fleece, 103-162 (2015), Berlin · doi:10.1007/978-3-662-48258-2_6
[3] Klar A, Marheineke N, Wegener R. Hierarchy of mathematical models for production processes of technical textiles. Z Angew Math Mech. 2009;89:941-61. · Zbl 1230.74076 · doi:10.1002/zamm.200900282
[4] Marheineke N, Wegener R. Fiber dynamics in turbulent flows: general modeling framework. SIAM J Appl Math. 2006;66(5):1703-26. · Zbl 1108.76036 · doi:10.1137/050637182
[5] Marheineke N, Wegener R. Modeling and application of a stochastic drag for fiber dynamics in turbulent flows. Int J Multiph Flow. 2011;37:136-48. · doi:10.1016/j.ijmultiphaseflow.2010.10.001
[6] Götz T, Klar A, Marheineke N, Wegener R. A stochastic model and associated Fokker-Planck equation for the fiber lay-down process in nonwoven production processes. SIAM J Appl Math. 2007;67(6):1704-17. · Zbl 1127.37041 · doi:10.1137/06067715X
[7] Klar A, Maringer J, Wegener R. A smooth 3D model for fiber lay-down in nonwoven production processes. Kinet Relat Models. 2012;5(1):57-112. · Zbl 1259.37032 · doi:10.3934/krm.2012.5.97
[8] Doulbeault J, Klar A, Mouhot C, Schmeiser C. Exponential rate of convergence to equilibrium for a model describing fiber lay-down processes. Appl Math Res Express. 2013;2013:165-75. · Zbl 1278.82044
[9] Grothaus M, Klar A. Ergodicity and rate of convergence for a non-sectorial fiber lay-down process. SIAM J Math Anal. 2008;40(3):968-83. · Zbl 1235.82054 · doi:10.1137/070697173
[10] Kolb M, Savov M, Wübker A. (Non-)ergodicity of a degenerate diffusion modeling the fiber lay down process. SIAM J Math Anal. 2013;45(1):1-13. · Zbl 1275.60059 · doi:10.1137/120870724
[11] Grothaus M, Klar A, Maringer J, Stilgenbauer P, Wegener R. Application of a three-dimensional fiber lay-down model to non-woven production processes. J Math Ind 2014;4:4. · doi:10.1186/2190-5983-4-4
[12] Briane M. Three models of nonperiodic fibrous materials obtained by homogenization. Modél Math Anal Numér. 1993;27(6):759-75. · Zbl 0795.92006
[13] Bris, C.; Kreiss, G. (ed.); Lötstedt, P. (ed.); Malqvist, A. (ed.); Neytcheva, M. (ed.), Some numerical approaches for weakly random homogenization, 29-45 (2010), Berlin · Zbl 1311.74101 · doi:10.1007/978-3-642-11795-4_3
[14] Lebée A, Sab K. Homogenization of a space frame as a thick plate: application of the bending-gradient theory to a beam lattice. Comput Struct. 2013;127:88-101. · doi:10.1016/j.compstruc.2013.01.011
[15] Sigmund O. Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct. 1994;31(17):2313-29. · Zbl 0946.74557 · doi:10.1016/0020-7683(94)90154-6
[16] Raina A, Linder C. A homogenization approach for nonwoven materials based on fiber undulations and reorientation. J Mech Phys Solids. 2014;65:12-34. · doi:10.1016/j.jmps.2013.12.011
[17] Adanur S, Liao T. Fiber arrangement characteristics and their effects on nonwoven tensile behavior. Tex Res J. 1999;69(11):816-24. · doi:10.1177/004051759906901104
[18] Bais-Singh S, Goswami BC. Theoretical determination of the mechanical response of spun-bonded nonwovens. J Text Inst. 1995;186(2):271-88. · doi:10.1080/00405009508631333
[19] Farukh F, Demirci E, Sabuncuoglu B, Acar M, Pourdeyhimi B, Silberschmidt VV. Mechanical analysis of bi-component-fibre nonwovens: finite-element strategy. Composites, Part B, Eng. 2015;68:327-35. · doi:10.1016/j.compositesb.2014.09.003
[20] Glowinski R, Pan TW, Hesla TI, Joseph DD, Périaux J. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J Comput Phys. 2001;169:363-426. · Zbl 1047.76097 · doi:10.1006/jcph.2000.6542
[21] Hämäläinen J, Lindström SB, Hämäläinen T, Niskanen H. Papermaking fibre-suspension flow simulations at multiple scales. J Eng Math. 2011;71(1):55-79. · Zbl 1254.76156 · doi:10.1007/s10665-010-9433-5
[22] Hu HH, Patanker NA, Zhu MY. Direct numerical simulation of fluid-solid systems using arbitrary Lagrangian-Eulerian technique. J Comput Phys. 2001;169:427-62. · Zbl 1047.76571 · doi:10.1006/jcph.2000.6592
[23] Peskin CS. The immersed boundary method. Acta Numer. 2002;11:479-517. · Zbl 1123.74309 · doi:10.1017/S0962492902000077
[24] Stockie JM, Green SI. Simulating the motion of flexible pulp fibres using the immersed boundary method. J Comput Phys. 1998;147(1):147-65. · Zbl 0935.76065 · doi:10.1006/jcph.1998.6086
[25] Svenning E, Mark A, Edelvik F, Glatt E, Rief S, Wiegmann A, Martinsson L, Lai R, Fredlund M, Nyman U. Multiphase simulation of fiber suspension flows using immersed boundary methods. Nord Pulp Pap Res J. 2012;27(2):184-91. · doi:10.3183/NPPRJ-2012-27-02-p184-191
[26] Tornberg AK, Shelle MJ. Simulating the dynamics and interactions of flexible fibers in Stokes flow. J Comput Phys. 2004;196:8-40. · Zbl 1115.76413 · doi:10.1016/j.jcp.2003.10.017
[27] Barrett JW, Knezevic DJ, Süli E. Kinetic models of dilute polymers: analysis, approximation and computation. Prague: Nećas Center for Mathematical Modeling; 2009.
[28] Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theory descriptions. San Diego: Academic Press; 1994. · Zbl 0789.76001
[29] Antman SS. Nonlinear problems of elasticity. New York: Springer; 2006.
[30] Baus F, Klar A, Marheineke N, Wegener R. Low-Mach-number - slenderness limit for elastic rods. 2015. arXiv:1507.03432. · Zbl 1465.35372
[31] Lindner F, Marheineke N, Stroot H, Vibe A, Wegener R. Stochastic dynamics for inextensible fibers in a spatially semi-discrete setting. Stoch Dyn. 2016. doi:10.1142/S0219437175001622016. · Zbl 1360.74098 · doi:10.1142/S0219437175001622016
[32] Schmeisser A, Wegener R, Hietel D, Hagen H. Smooth convolution-based distance functions. Graph Models. 2015;82:67-76. · doi:10.1016/j.gmod.2015.06.004
[33] Scott DW. Multivariate density estimation: theory, practice and visualization. New York: Wiley; 1992. · Zbl 0850.62006 · doi:10.1002/9780470316849
[34] Klar A, Maringer J, Wegener R. A 3D model for fiber lay-down in nonwoven production processes. Math Models Methods Appl Sci. 2012;22(9):1250020. · Zbl 1248.37046 · doi:10.1142/S0218202512500200
[35] Lagnese J, Leugering G, Schmidt E. Modeling, analysis and control of dynamic elastic multi-link structures. Boston: Springer; 1994. · Zbl 0810.73004 · doi:10.1007/978-1-4612-0273-8
[36] Hohe J, Becker W. Determination of the elasticity tensor of non-orthotropic celluar sandwich cores. Tech Mech. 1999;19(4):259-68.
[37] Munoz Romero J. Finite-element analysis of flexible mechanisms using the master-slave approach with emphasis on the modelling of joints [PhD thesis]. London: Imperial College; 2004. · Zbl 1230.74076
[38] Bonilla LL, Götz T, Klar A, Marheineke N, Wegener R. Hydrodynamic limit for the Fokker-Planck equation describing fiber lay-down models. SIAM J Appl Math. 2007;68(3):648-65. · Zbl 1140.37015 · doi:10.1137/070692728
[39] Chang C, Gorissen B, Melchior S. Fast oriented bounding box optimization on the rotation group SO(3,R)\(SO(3,\mathbb{R})\). ACM Trans Graph. 2011;30(5):122. · doi:10.1145/2019627.2019641
[40] Ericson E. Real-time collision detection. London: CRC Press; 2004.
[41] Simo JC. A finite strain beam formulation. The three-dimensional dynamic problem - part I. Comput Methods Appl Mech Eng. 1985;49:55-70. · Zbl 0583.73037 · doi:10.1016/0045-7825(85)90050-7
[42] Hill R. Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids. 1963;11(5):357-72. · Zbl 0114.15804 · doi:10.1016/0022-5096(63)90036-X
[43] Ohser J, Schladitz K. 3D images of materials structures - processing and analysis. Weinheim: Wiley-VCH; 2009. · Zbl 1165.94306 · doi:10.1002/9783527628308
[44] Redenbach C, Rack A, Schladitz K, Wirjadi O, Godehardt M. Beyond imaging: on the quantitative analysis of tomographic volume data. Int J Mater Res. 2012;2:217-27. · doi:10.3139/146.110671
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.