×

zbMATH — the first resource for mathematics

On inflection points of some type of quartics with a single triple point. (English) Zbl 0612.14024
The triple point of a curve of the type described in the title may have (a) three linear places with different tangents; or (b) a quadratic place and a linear place, with different tangents; or (c) a place of degree 3. - The authors show that the number of points of inflexion is 6, 4, 2 respectively, and they analyse case (b) in some detail. (As in the article reviewed above, the results of about the number of points of inflexion follow from Plücker’s formulae, because the triple point is equivalent to three nodes in case (a), two nodes and one cups in case (b), and one node and two cusps in case (c).).
Reviewer: E.J.F.Primrose
MSC:
14H20 Singularities of curves, local rings
51N35 Questions of classical algebraic geometry
PDF BibTeX XML Cite
References:
[1] B. Bydžovský: Inflexní body n\?kterých rovinných kvartik. Časopis pro p\?stování matematiky, roč. 88 (1963), str. 224-235.
[2] J. Metelka: Poznámka k článku akademika Bohumila Bydžovského ,,Inflexní body některých rovinných kvartik“. Časopis pro pěstování matematiky, roč. 90 (1965), str. 455 - 457.
[3] Dalibor Klucký, Jaromír Krys: Druhá poznámka k článku akademika Bohumìla Bydžovského ”Inflexní body některých rovinných kvartik“. Časopis pro p\?stování matematiky, roč. 92 (1967), str. 212-214.
[4] Dalibor Klucký, Libuše Marková: A contribution to the theory of tacnodal quartics. Časopis pro p\?stování matematiky, roč. 110 (1985), str. 92-100. · Zbl 0587.14014
[5] Robert J. Walker: Algebraic curves. Springer-Verlag New York 1950. · Zbl 0039.37701
[6] Dalibor Klucký, Libuše Marková: A note on quartic with a tacnode and flexnode. Acta Universitatis Palackianae Olomucensis - to appear. · Zbl 0612.14023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.