×

Extensional channel flow revisited: a dynamical systems perspective. (English) Zbl 1402.76038

Summary: Extensional self-similar flows in a channel are explored numerically for arbitrary stretching-shrinking rates of the confining parallel walls. The present analysis embraces time integrations, and continuations of steady and periodic solutions unfolded in the parameter space. Previous studies focused on the analysis of branches of steady solutions for particular stretching-shrinking rates, although recent studies focused also on the dynamical aspects of the problems. We have adopted a dynamical systems perspective, analysing the instabilities and bifurcations the base state undergoes when increasing the Reynolds number. It has been found that the base state becomes unstable for small Reynolds numbers, and a transitional region including complex dynamics takes place at intermediate Reynolds numbers, depending on the wall acceleration values. The base flow instabilities are constitutive parts of different codimension-two bifurcations that control the dynamics in parameter space. For large Reynolds numbers, the restriction to self-similarity results in simple flows with no realistic behaviour, but the flows obtained in the transition region can be a valuable tool for the understanding of the dynamics of realistic Navier-Stokes solutions.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Berman, AS, Laminar flow in channels with porous walls, J. Appl. Phys., 24, 1232, (1953) · Zbl 0050.41101 · doi:10.1063/1.1721476
[2] Drazin, PG; Riley, N., \(The Navier-Stokes equations, a classification of flows and exacts solutions\), (2006), Cambridge University Press
[3] Waters, SL, Solute uptake through the walls of a pulsating channel, J. Fluid Mech., 433, 193-208, (2001) · Zbl 0985.76083 · doi:10.1017/S0022112000003396
[4] Brady, JF; Acrivos, A., Steady flow in a channel or tube with an accelerating surface velocity. An exact solution to the Navier-Stokes equations with reverse flow, J. Fluid Mech., 112, 127-150, (1981) · Zbl 0491.76037 · doi:10.1017/S0022112081000323
[5] Cox, SM, Analysis of steady flow in a channel with one porous wall, or with accelerating walls, SIAM. J. Appl. Math., 51, 429-438, (1991a) · Zbl 0726.76035 · doi:10.1137/0151021
[6] Watson, EBB; Banks, WHH; Zaturska, MB; Drazin, PG, On transition to chaos in two-dimensional channel flow symmetrically driven by accelerating walls, J. Fluid Mech., 212, 451-485, (1990) · Zbl 0692.76034 · doi:10.1017/S0022112090002051
[7] King, J.; Cox, S., Asymptotic analysis of the steady-state and time-dependent Berman problem, J. Eng. Math., 39, 87, (2001) · Zbl 1009.76023 · doi:10.1023/A:1004824527547
[8] Cox, SM, Two-dimensional flow of a viscous fluid in a channel with porous walls, J. Fluid Mech., 227, 1-33, (1991) · Zbl 0721.76080 · doi:10.1017/S0022112091000010
[9] Wang, C-A; Wu, T-C, Similarity solutions of steady flows in a channel with accelerating walls, Comput. Math. Appl., 30, 1-16, (1995) · Zbl 0845.34037 · doi:10.1016/0898-1221(95)00152-O
[10] Espín, L.; Papageorgiou, DT, Flow in a channel with accelerating or decelerating wall velocity: a comparison between self-similar solutions and Navier-Stokes computations in finite domains, Phys. Fluids, 21, 113601, (2009) · Zbl 1183.76194 · doi:10.1063/1.3268130
[11] Brady, J.; Acrivos, A., Closed-cavity laminar flows at moderate Reynolds numbers, J. Fluid Mech., 115, 427-442, (1982) · Zbl 0493.76035 · doi:10.1017/S0022112082000834
[12] Proudman, I.; Johnson, K., Boundary-layer growth near a rear stagnation point, J. Fluid Mech., 12, 161-168, (1962) · Zbl 0113.19501 · doi:10.1017/S0022112062000130
[13] Kelley, C., \(Solving nonlinear equations with Newton’s method\), (2003), SIAM · Zbl 1031.65069
[14] Mellibovsky, F.; Meseguer, A., A mechanism for streamwise localisation of nonlinear waves in shear flows, J. Fluid Mech., 779, R1, (2015) · Zbl 1360.76095 · doi:10.1017/jfm.2015.440
[15] Trefethen, LN; Bau, D., \(Numerical linear algebra\), (1997), SIAM
[16] Kuznetsov, YA, \(Elements of applied bifurcation theory\), (2004), Springer
[17] Schneider, TM; Eckhardt, B.; Yorke, JA, Turbulence transition and the edge of chaos in pipe flow, Phys. Rev. Lett., 99, 034502, (2007) · doi:10.1103/PhysRevLett.99.034502
[18] Mellibovsky, F.; Meseguer, A.; Schneider, TM; Eckhardt, B., Transition in localized pipe flow turbulence, Phys. Rev. Lett., 103, 054502, (2009) · doi:10.1103/PhysRevLett.103.054502
[19] Grebogi, C.; Ott, E.; Yorke, JA, Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics, Science, 238, 632-638, (1987) · Zbl 1226.37015 · doi:10.1126/science.238.4827.632
[20] Xie, J.; Ding, W.; Dowell, E.; Virgin, L., Hopf-flip bifurcation of high dimensional maps and application to vibro-impact systems, Acta Mech. Sinica, 21, 402-410, (2005) · Zbl 1200.70025 · doi:10.1007/s10409-005-0045-7
[21] Feigenbaum, MJ, Quantitative universality for a class of nonlinear transformations, J. Stat. Phys., 19, 25-52, (1978) · Zbl 0509.58037 · doi:10.1007/BF01020332
[22] Feigenbaum, MJ, The universal metric properties of nonlinear transformations, J. Stat. Phys., 21, 669-706, (1979) · Zbl 0515.58028 · doi:10.1007/BF01107909
[23] Sharkovskii, AN, Coexistence of cycles of a continuous map of the line into itself, Ukrainian Math. J., 16, 61-71, (1964)
[24] Li, T-Y; Yorke, JA, Period three implies chaos, Am. Math. Monthly, 82, 985-992, (1975) · Zbl 0351.92021 · doi:10.2307/2318254
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.