×

The first peptides: the evolutionary transition between prebiotic amino acids and early proteins. (English) Zbl 1403.92196

Summary: The issues we attempt to tackle here are what the first peptides did look like when they emerged on the primitive earth, and what simple catalytic activities they fulfilled. We conjecture that the early functional peptides were short (3–8 amino acids long), were made of those amino acids, Gly, Ala, Val and Asp, that are abundantly produced in many prebiotic synthesis experiments and observed in meteorites, and that the neutralization of Asp’s negative charge is achieved by metal ions. We further assume that some traces of these prebiotic peptides still exist, in the form of active sites in present-day proteins. Searching these proteins for prebiotic peptide candidates led us to identify three main classes of motifs, bound mainly to Mg\(^{2+}\) ions: D(F/Y)DGD corresponding to the active site in RNA polymerases, DGD(G/A)D present in some kinds of mutases, and DAKVGDGD in dihydroxyacetone kinase. All three motifs contain a DGD submotif, which is suggested to be the common ancestor of all active peptides. Moreover, all three manipulate phosphate groups, which was probably a very important biological function in the very first stages of life. The statistical significance of our results is supported by the frequency of these motifs in today’s proteins, which is three times higher than expected by chance, with a \(P\)-value of \(3\times 10^{-2}\). The implications of our findings in the context of the appearance of life and the possibility of an experimental validation are discussed.

MSC:

92D15 Problems related to evolution
92D20 Protein sequences, DNA sequences
92C40 Biochemistry, molecular biology

Software:

Pfam
PDFBibTeX XMLCite
Full Text: DOI arXiv HAL

References:

[1] Berman, H.M.; Battistuz, T.; Bhat, T.N.; Bluhm, W.F.; Bourne, P.E.; Burkhardt, K.; Feng, Z.; Gilliland, G.L.; Iype, L.; Jain, S.; Fagan, P.; Marvin, J.; Padilla, D.; Ravichandran, V.; Schneider, B.; Thanki, N.; Weissig, H.; Westbrook, J.D.; Zardecki, C., The protein data bank, Acta crystallogr. D biol. crystallogr., 58, 899-907, (2002)
[2] Botta, O.; Glavin, D.P.; Kminek, G.; Bada, J.L., Relative amino acid concentrations as a signature for parent body processes of carbonaceous chondrites, Orig. life evol. biosphere, 32, 143-163, (2002)
[3] Chen, I.A., The emergence of cells during the origin of life, Science, 314, 1558-1559, (2006)
[4] Chen, I.A.; Szostak, J.W., Membrane growth can generate a transmembrane ph gradient in fatty acid vesicles, Proc. natl. acad. sci. USA, 101, 7965-7970, (2004)
[5] Chen, I.A.; Roberts, R.W.; Szostak, J.W., The emergence of competition between model protocells, Science, 305, 1474-1476, (2004)
[6] Cleaves, H.J.; Nelson, K.E.; Miller, S.L., The prebiotic synthesis of pyrimidines in frozen solution, Naturwissenschaften, 93, 228-231, (2006)
[7] Cleaves, H.J.; Chalmers, J.H.; Lazcano, A.; Miller, S.L.; Bada, J.L., A reassessment of prebiotic organic synthesis in neutral planetary atmospheres, Orig. life evol. biosphere, 38, 105-115, (2008)
[8] Deamer, D.W., Boundary structures are formed by organic components of the murchison carbonaceous chondrite, Nature, 317, 792-794, (1985)
[9] Erni, B.; Siebold, C.; Christen, S.; Srinavas, A.; Oberholzer, A.; Baumann, U., Small substrate, big surprise: fold, function and phylogeny of dihydroxyacetone kinases, Cell. mol. life sci., 63, 890-900, (2006)
[10] Ferris, J.P., Montmorillonite-catalysed formation of RNA-oligomers: the possible role of catalysis in the origins of life, Phil. trans. R. soc. B, 361, 1777-1786, (2006)
[11] Finn, R.D.; Tate, J.; Mistry, J.; Coggill, P.C.; Sammut, J.S.; Hotz, H.R.; Ceric, G.; Forslund, K.; Eddy, S.R.; Sonnhammer, E.L.; Bateman, A., The pfam protein families database, Nucl. acids res. database issue, 36, D281-D288, (2008)
[12] Freeland, S.J.; Hurst, L.D., The genetic code is one in a million, J. mol. evol., 47, 238-248, (1998)
[13] Gilbert, W., The RNA world, Nature, 319, 618, (1986)
[14] Glasner, M.; Bergman, N.; Bartel, D.P., Metal ions requirements for structure and catalysis of an RNA ligase ribozyme, Biochemistry, 41, 8103-8112, (2002)
[15] Honda, S.; Yamasaki, K.; Sawada, Y.; Morii, H., 10-residue folded peptide designed by segment statistics, Structure, 12, 1507-1518, (2004)
[16] Hurst, L.D.; Feil, E.J.; Rocha, E.P.C., Causes of trends in amino-acid gain and loss, Nature, 442, E11-E12, (2006)
[17] Iyer, L.M.; Koonin, E.V.; Aravind, L., Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases, BMC struc. biol., 3, 1, (2003)
[18] Johnson, A.P.; Cleaves, H.J.; Dworkin, J.P.; Glavin, D.P.; Lazcano, A.; Bada, J.L., The Miller volcanic spark discharge experiment, Science, 322, 404, (2008)
[19] Johnston, W.K.; Unrau, P.J.; Lawrence, M.S.; Glasner, M.E.; Bartel, D.P., RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension, Science, 292, 1319-1325, (2001)
[20] Jones, P.A.; Cunningham, M.R.; Godfrey, P.D.; Cragg, D.M., A search for biomolecules in sagittarius B2 (LMH) with the Australia telescope compact array, Mon. not. R. astron. soc., 374, 579-589, (2007)
[21] Jordan, I.K.; Kondrashov, F.A.; Adzhhubel, I.A.; Wolf, Y.I.; Koonin, E.V.; Kondrashov, A.S.; Sunyaev, S., A universal trend of amino acid gain and loss in protein evolution, Nature, 433, 633-638, (2005)
[22] Kochavi, E.; Bar-Nun, A.; Fleminger, G., Substrate-directed formation of small biocatalysts under prebiotic conditions, J. mol. evol., 45, 342-351, (1997)
[23] Kuan, Y.J.; Charnley, S.B.; Huang, H.C.; Tseng, W.L.; Kisiel, Z., Interstellar glycine, Astrophys. J., 593, 848-867, (2003)
[24] Kvenvolden, K.A., (), 301-309
[25] Laskowski, R.A.; Chistyakov, V.V.; Thornton, J.M., Pdbsum more: new summaries and analyses of the known 3D structures of proteins and nucleic acids, Nucleic acids res., 33, D266-D268, (2005)
[26] Lee, D.H.; Granja, J.R.; Martinez, J.A.; Severin, K.; Ghadiri, M.R., A self-replicating peptide, Nature, 382, 525-528, (1996)
[27] Mansy, S.S.; Schrum, J.P.; Krishnamurthy, M.; Tobé, S.; Treco, D.A.; Szostak, J.W., Template-directed synthesis of a genetic polymer in a model protocell, Nature, 454, 122-126, (2008)
[28] Miller., S.L., Production of some organic compounds under possible primitive Earth conditions, J. am. chem. soc., 77, 2351-2361, (1955)
[29] Miller, S.L., The atmosphere of the primitive Earth and the prebiotic synthesis of amino acids, Orig. life, 5, 139-151, (1974)
[30] Miller, S.L., Which organic compounds could have occurred on the prebiotic Earth?, Cold spring harbor symp. quant. biol., 52, 17-27, (1987)
[31] Plankensteiner, K.; Reiner, H.; Rode, B.M., Prebiotic chemistry: the amino acid and peptide world, Current organic chemistry, 9, 1107-1114, (2005)
[32] Plankensteiner, K.; Reiner, H.; Rode, B.M., Amino acids on the rampant primordial Earth: electric discharges and the hot salty Ocean, Mol. divers., 10, 3-7, (2006)
[33] Prieur, B.P., Étude de l’activité prébiotique potentielle de l’acide borique, C. R. acad. sci. Paris, chimie/chemistry, 4, 1-4, (2001)
[34] Regni, C.; Tipton, P.A.; Beamer, L.J., Crystal structure of PMM/PGM: an enzyme in the biosynthetic pathway of P. aeruginosa virulence factors, Structure, 10, 269-279, (2002)
[35] Regni, C.; Shackelford, G.S.; Beamer, L.J., Complexes of the enzyme phosphomannomutase/phosphoglucomutase with a slow substrate and inhibitor, J. acta cryst. F, 62, 722-726, (2006)
[36] Regni, C.; Schramm, A.M.; Beamer, L.J., The reaction of phosphohexomutase from pseudomonas aeruginosa. structural insights into a simple processive enzyme, J. biol. chem., 281, 15564-15571, (2006)
[37] Ricardo, A.; Carrigan, M.A.; Olcott, A.N.; Benner, S.A., Borate minerals stabilize ribose, Science, 303, 196, (2004)
[38] Ring, D.; Wolman, Y.; Friedmann, N.; Miller, S.N., Prebiotic synthesis of hydrophobic and protein amino acids, Proc. natl. acad. sci., 69, 765-768, (1972)
[39] Robertson, M.P.; Scott, W.G., The structural basis of ribozyme-catalyzed RNA assembly, Science, 315, 1549-1553, (2007)
[40] Rode, B.M.; Son, H.L.; Suwannachot, Y.; Bujdak, J., The combination of salt induced peptide formation reaction and Clay catalysis: a way to higher peptides under primitive Earth conditions, Orig. life evol. biosphere, 29, 273-286, (1999)
[41] Sacerdote, M.G.; Szostak, J.W., Semipermeable lipid bilayers exhibit diastereoselectivity favoring ribose, Proc. natl. acad. sci. USA, 102, 6004-6008, (2005)
[42] Salgado, P.S.; Koivunen, M.R.L.; Makeyev, E.V.; Bamford, D.H.; Stuart, D.I.; Grimes, J.M., The structure of an rnai polymerase links RNA silencing and transcription, Plos biol., 4, e434, (2006)
[43] Schlesinger, G.; Miller, S.L., Prebiotic synthesis in atmospheres containing CH_{4}, CO, and CO2. I. amino acids, J. mol. evol., 19, 376-382, (1983)
[44] Schwendinger, M.G.; Rode, B.M., Possible role of copper and sodium chloride in prebiotic evolution of peptides, Anal. sci., 5, 411-414, (1989)
[45] Shackelford, G.S.; Regni, C.A.; Beamer, L.J., Evolutionary trace analysis of the α-{\scd}-phosphohexomutase superfamily, Protein sci., 13, 2130-2138, (2006)
[46] Shimizu, M., Specific aminoacylation of C4N hairpin RNAs with the cognate aminoacyl-adenylates in the presence of a dipeptide: origin of the genetic code, J. biochem., 117, 23-26, (1996)
[47] Shimizu, M., Histidine and its anticodon gpupg are similar metabolic reaction rate enhancers: molecular origin of the genetic code, J. phys. soc. jpn., 73, 323-326, (2004)
[48] Shimizu, M., Amino acid and anticodon enhance metabolic reaction rates weakly but specifically: genetic code world, J. phys. soc. jpn., 76, 053801, (2007)
[49] Siebold, C.; Arnold, I.; Garcia-Alles, L.F.; Baumann, U.; Erni, B., Crystal structure of the citrobacter freundii dihydroxyacetone kinase reveals an eight-stranded α-helical barrel ATP-binding domain, J. biol. chem., 278, 48236-48244, (2003)
[50] Snyder, L.E.; Lovas, F.J.; Hollis, J.M.; Friedel, D.N.; Jewell, P.R.; Remijan, A.; Ilyushin, V.V.; Alekseev, E.A.; Dyubko, S.F., A rigorous attempt to verify interstellar glycine, Astrophys. J., 619, 914-930, (2005)
[51] Takagi, Y.; Ikeda, Y.; Taira, K., Ribozyme mechanisms, Top. curr. chem., 232, 213-251, (2004)
[52] Yamagata, Y.; Watanabe, H.; Saitoh, M.; Namba, T., Volcanic production of polyphosphates and its relevance to prebiotic evolution, Nature, 352, 516-519, (1991)
[53] Zaia, D.A.M.; Zaia, C.T.B.V.; De Santana, H., Which amino acids should be used in prebiotic chemistry studies?, Orig. life evol. biosphere, 38, 469-488, (2008)
[54] Zuckerkandl, E.; Derancourt, J.; Vogel, H., Mutational trends and random processes in the evolution of informational macromolecules, J. mol. biol., 59, 473-490, (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.