×

Consistent smooth bootstrap kernel intensity estimation for inhomogeneous spatial Poisson point processes. (English) Zbl 1382.60073

Summary: Non-parametric estimation and bootstrap techniques play an important role in many areas of statistics. In the point process context, kernel intensity estimation has been limited to exploratory analysis because of its inconsistency, and some consistent alternatives have been proposed. Furthermore, most authors have considered kernel intensity estimators with scalar bandwidths, which can be very restrictive. This work focuses on a consistent kernel intensity estimator with unconstrained bandwidth matrix. We propose a smooth bootstrap for inhomogeneous spatial point processes. The consistency of the bootstrap mean integrated squared error (MISE) as an estimator of the MISE of the consistent kernel intensity estimator proves the validity of the resampling procedure. Finally, we propose a plug-in bandwidth selection procedure based on the bootstrap MISE and compare its performance with several methods currently used through both as a simulation study and an application to the spatial pattern of wildfires registered in Galicia (Spain) during 2006.

MSC:

60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
62G05 Nonparametric estimation
62G09 Nonparametric statistical resampling methods
62G20 Asymptotic properties of nonparametric inference
62P12 Applications of statistics to environmental and related topics

Software:

spatstat
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baddeley, Spatstat: an R package for analyzing spatial point patterns, J. Stat. Soft 12 (6) pp 1– (2005) · doi:10.18637/jss.v012.i06
[2] Berman, Estimating weighted integrals of the second-order intensity of a spatial point process, J. R. Stat. Soc. Ser. B. Stat. Methodol. 51 (1) pp 81– (1989) · Zbl 0671.62043
[3] Brooks, Asymptotic optimality of the least-squares cross-validation bandwidth for kernel estimates of intensity functions, Stochastic Process. Appl. 38 (1) pp 157– (1991) · Zbl 0724.62084 · doi:10.1016/0304-4149(91)90076-O
[4] Cao, Bootstrapping the mean integrated squared error, J. Multivariate Anal. 45 (1) pp 137– (1993) · Zbl 0779.62038 · doi:10.1006/jmva.1993.1030
[5] Cao, A comparative study of several smoothing methods in density estimation, Comput. Statist. Data Anal. 17 (2) pp 153– (1994) · Zbl 0937.62518 · doi:10.1016/0167-9473(92)00066-Z
[6] Comas, Characterising forest spatial structure through inhomogeneous second order characteristics, Stoch. Env. Res Risk. A. 23 (3) pp 387– (2009) · doi:10.1007/s00477-008-0224-8
[7] Cowling, Bootstrap confidence regions for the intensity of a poisson point process, J. Amer. Statist. Assoc. 91 (436) pp 1516– (1996) · Zbl 0882.62078 · doi:10.1080/01621459.1996.10476719
[8] Cressie, Statistics for spatial data (1993)
[9] Cucala , L. 2006 Espacements bidimensionnels et données entachées d’erreurs dans l’analyse des processus ponctuels spatiaux Toulouse I.
[10] Cucala, Intensity estimation for spatial point processes observed with noise, Scand. J. Stat. 35 (2) pp 322– (2008) · Zbl 1164.62068 · doi:10.1111/j.1467-9469.2007.00583.x
[11] Devroye, Wiley Series in Probability and Mathematical Statistics: Tracts on Probability and Statistics, in: Nonparametric density estimation: the l1 view (1985)
[12] Diggle, A kernel method for smoothing point process data, J. R. Stat. Soc. Ser. C. Appl. Stat. 34 (2) pp 138– (1985) · Zbl 0584.62140
[13] Diggle, Statistical analysis of spatial point patterns (2003) · Zbl 1021.62076
[14] Diggle, Equivalence of smoothing parameter selectors in density and intensity estimation, J. Amer. Statist. Assoc. 83 pp 793– (1988) · Zbl 0662.62036 · doi:10.1080/01621459.1988.10478665
[15] Duong , T. 2013 ks: Kernel smoothing
[16] Duong, Plug-in bandwidth matrices for bivariate kernel density estimation, J. Nonparametr. Stat. 15 (1) pp 17– (2003) · Zbl 1019.62032 · doi:10.1080/10485250306039
[17] Duong, Cross-validation bandwidth matrices for multivariate kernel density estimation, Scand. J. Stat. 32 (3) pp 485– (2005) · Zbl 1089.62035 · doi:10.1111/j.1467-9469.2005.00445.x
[18] González-Manteiga, Bootstrap selection of the smoothing parameter in nonparametric hazard rate estimation, J. Amer. Statist. Assoc. 91 (435) pp 1130– (1996) · Zbl 0880.62045
[19] Guan, A composite likelihood cross-validation approach in selecting bandwidth for the estimation of the pair correlation function, Scand. J. Stat. 34 (2) pp 336– (2007) · Zbl 1142.62072 · doi:10.1111/j.1467-9469.2006.00533.x
[20] Guan, A goodness-of-fit test for inhomogeneous spatial poisson processes, Biometrika 95 (4) pp 831– (2008a) · Zbl 1400.62212 · doi:10.1093/biomet/asn045
[21] Guan, On consistent nonparametric intensity estimation for inhomogeneous spatial point processes, J. Amer. Statist. Assoc. 103 (483) pp 1238– (2008b) · Zbl 1205.62139 · doi:10.1198/016214508000000526
[22] Guan, A thinned block bootstrap variance estimation procedure for inhomogeneous spatial point patterns, J. Amer. Statist. Assoc. 102 (480) pp 1377– (2007) · Zbl 1332.62108 · doi:10.1198/016214507000000879
[23] Illian, Statistical analysis and modelling of spatial point patterns (2008) · Zbl 1197.62135
[24] Lahiri, Prediction of spatial cumulative distribution functions using subsampling, J. Amer. Statist. Assoc. 94 (445) pp 86– (1999) · Zbl 1180.62133 · doi:10.1080/01621459.1999.10473821
[25] Loader, Statistics and Computing, in: Local regression and likelihood (1999) · Zbl 0929.62046
[26] Loh, Bootstrapping a spatial point process, Statist. Sinica 14 (1) pp 69– (2004) · Zbl 1035.62036
[27] Loh, Bootstrapping an inhomogeneous point process, Statist. Plann. Inference 140 (3) pp 734– (2010) · Zbl 1177.62058 · doi:10.1016/j.jspi.2009.09.003
[28] Loh, Estimating a cosmological mass bias parameter with bootstrap bandwidth selection, J. R. Stat. Soc. Ser. C. Appl. Stat. 59 (5) pp 761– (2010) · doi:10.1111/j.1467-9876.2010.00728.x
[29] Marron, Exact mean integrated squared error, Ann. Statist. 20 (2) pp 712– (1992) · Zbl 0746.62040 · doi:10.1214/aos/1176348653
[30] Scott, Multivariate density estimation. Theory, practice and visualization (1992) · Zbl 0850.62006 · doi:10.1002/9780470316849
[31] Silverman, Density estimation for statistics and data analysis (monographs on statistics and applied probability) (1986) · Zbl 0617.62042 · doi:10.1007/978-1-4899-3324-9
[32] Taylor, Bootstrap choice of the smoothing parameter in kernel density estimation, Biometrika 76 (4) pp 705– (1989) · Zbl 0678.62042 · doi:10.1093/biomet/76.4.705
[33] Waagepetersen, An estimating function approach to inference for inhomogeneous neyman-scott processes, Biometrics 63 (1) pp 252– (2007) · Zbl 1122.62073 · doi:10.1111/j.1541-0420.2006.00667.x
[34] Wand, Multivariate plug-in bandwidth selection, Comput. Statist. 9 pp 97– (1994) · Zbl 0937.62055
[35] Wand, Error analysis for general multtvariate kernel estimators, J. Nonparametr. Stat. 2 (1) pp 1– (1992) · Zbl 1360.62141 · doi:10.1080/10485259208832538
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.