×

Using ALE-VMS to compute aerodynamic derivatives of bridge sections. (English) Zbl 1411.74029

Summary: Aeroelastic analysis is a major task in the design of long-span bridges, and recent developments in computer power and technology have made computational fluid dynamics (CFD) an important supplement to wind tunnel experiments. In this paper, we employ the finite element method (FEM) with an effective mesh-moving algorithm to simulate the forced-vibration experiments of bridge sectional models. We have augmented the formulation with weakly-enforced essential boundary conditions, and a numerical example illustrates how weak enforcement of the no-slip boundary condition gives a very accurate representation of the aeroelastic forces in the case of relatively coarse boundary layer mesh resolution. To demonstrate the accuracy of the method for industrial applications, the complete aerodynamic derivatives for lateral, vertical and pitching degrees-of-freedom are computed for two bridge deck sectional models and compared with experimental wind-tunnel results. Although some discrepancies are seen in the high range of reduced velocities, the proposed numerical framework generally reproduces the experiments with good accuracy and proves to be a beneficial tool in simulation of bluff body aerodynamics for bridge design.

MSC:

74H45 Vibrations in dynamical problems in solid mechanics
76G25 General aerodynamics and subsonic flows
76M10 Finite element methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Bazilevs, Y.; Hsu, M.-C.; Takizawa, K.; Tezduyar, T. E., ALE-VMS And ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid – structure interaction, Math Models Methods Appl Sci, 22, supp02, 1230002 (2012) · Zbl 1404.76187
[2] Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E., Challenges and directions in computational fluid – structure interaction, Math Models Methods Appl Sci, 23, 215-221 (2013) · Zbl 1261.76025
[3] Bazilevs, Y.; Takizawa, K.; Tezduyar, T.; Hsu, M.-C.; Kostov, N.; McIntyre, S., Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods, Arch Comput Methods Eng, 21, 359-398 (2014) · Zbl 1348.74095
[4] Takizawa, K.; Bazilevs, Y.; Tezduyar, T. E.; Long, C. C.; Marsden, A. L.; Schjodt, K., ST And ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling, Math Models Methods Appl Sci, 24, 2437-2486 (2014) · Zbl 1296.76113
[5] Bazilevs, Y.; Takizawa, K.; Tezduyar, T., New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods., Math Models Methods Appl Sci, 25, 2217-2226 (2015) · Zbl 1329.76007
[6] Bazilevs, Y.; Korobenko, A.; Yan, J.; Pal, A.; Gohari, S.; Sarkar, S., ALE-VMS Formulation for stratified turbulent incompressible flows with applications, Math Models Methods Appl Sci, 25, 12, 2349-2375 (2015) · Zbl 1329.76050
[7] Bazilevs, Y.; Hughes, T. J.R., Weak imposition of dirichlet boundary conditions in fluid mechanics, Computers and Fluids, 36, 12-26 (2007) · Zbl 1115.76040
[8] Bazilevs, Y.; Michler, C.; Calo, V. M.; Hughes, T. J.R., Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes, Comput Methods Appl Mech Eng, 199, 780-790 (2010) · Zbl 1406.76023
[9] Bazilevs, Y.; Michler, C.; Calo, V. M.; Hughes, T. J.R., Weak dirichlet boundary conditions for wall-bounded turbulent flows, Comput Methods Appl Mech Eng, 196, 4853-4862 (2007) · Zbl 1173.76397
[10] Golshan, R.; Tejada-Martínez, A.; Juha, M.; Bazilevs, Y., Large-eddy simulation with near-wall modeling using weakly enforced no-slip boundary conditions, Comput Fluids, 118, 172-181 (2015) · Zbl 1390.76155
[11] Takizawa, K.; Tezduyar, T. E.; Mochizuki, H.; Hattori, H.; Mei, S.; Pan, L., Space-time VMS method for flow computations with slip interfaces (ST-SI), Math Models Methods Appl Sci, 25, 2377-2406 (2015) · Zbl 1329.76345
[12] Takizawa, K.; Tezduyar, T. E.; Kuraishi, T.; Tabata, S.; Takagi, H., Computational thermo-fluid analysis of a disk brake, Comput Mech, 57, 965-977 (2016) · Zbl 1382.74044
[13] Bazilevs, Y.; Calo, V. M.; Cottrel, J. A.; Hughes, T. J.R.; Reali, A.; Scovazzi, G., Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput Methods Appl Mech Eng, 197, 173-201 (2007) · Zbl 1169.76352
[14] Bazilevs, Y.; Akkerman, I., Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual – based variational multiscale method, J Comput Phys, 229, 3402-3414 (2010) · Zbl 1290.76037
[15] Yan, J.; Korobenko, A.; Tejada-Martinez, A.; Golshan, R.; Bazilevs, Y., A new variational multiscale formulation for stratified incompressible turbulent flows, Computers Fluids, 158, 150-156 (2017) · Zbl 1390.76107
[16] Hughes, T. J.R.; Liu, W. K.; Zimmermann, T. K., Lagrangian-Eulerian finite element formulation for incompressible viscous flows, Comput Methods Appl Mech Eng, 29, 3, 329-349 (1981) · Zbl 0482.76039
[17] Bazilevs, Y.; Takizawa, K.; Tezduyar, T. E., Computational fluid – structure interaction: methods and applications (2013), Wiley · Zbl 1286.74001
[18] Korobenko, A.; Hsu, M.-C.; Akkerman, I.; Bazilevs, Y., Aerodynamic simulation of vertical-axis wind turbines, J Appl Mech, 81(2), 021011 (2013)
[19] Hsu, M.-C.; Akkerman, I.; Bazilevs, Y., Wind turbine aerodynamics using ALEVMS: validation and the role of weakly enforced boundary conditions, Comput Mech, 50, 4, 499-511 (2012)
[20] Yan, J.; Augier, B.; Korobenko, A.; Czarnowski, J.; Ketterman, G.; Bazilevs, Y., FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration, Computers Fluids, 141, 201-211 (2016) · Zbl 1390.76375
[21] Akkerman, I.; Dunaway, J.; Kvandal, J.; Spinks, J.; Bazilevs, Y., Toward free-surface modeling of planing vessels: simulation of the fridsma hull using ALE-VMS, Comput Mech, 50, 719-727 (2012)
[22] Akkerman, I.; Bazilevs, Y.; Benson, D. J.; Farthing, M. W.; Kees, C. E., Free-surface flow and fluid – object interaction modeling with emphasis on ship hydrodynamics, J Appl Mech, 79, 010905 (2012)
[23] Hsu, M.-C.; Kamensky, D.; Bazilevs, Y.; Sacks, M. S.; Hughes, T. J.R., Fluid – structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation, Comput Mech, 54, 1055-1071 (2014) · Zbl 1311.74039
[24] Kamensky, D.; Hsu, M.-C.; Schillinger, D.; Evans, J.; Aggarwal, A.; Bazilevs, Y., An immersogeometric variational framework for fluid – structure interaction: application to bioprosthetic heart valves, Comput Methods Appl Mech Eng, 284, 1005-1053 (2015) · Zbl 1423.74273
[25] Takizawa, K.; Tezduyar, T. E.; McIntyre, S.; Kostov, N.; Kolesar, R.; Habluetzel, C., Space-time VMS computation of wind-turbine rotor and tower aerodynamics, Comput Mech, 53, 1-15 (2014) · Zbl 1398.76129
[26] Takizawa, K., Computational engineering analysis with the new-generation space – time methods, Comput Mech, 54, 193-211 (2014)
[27] Takizawa, K.; Henicke, B.; Puntel, A.; Kostov, N.; Tezduyar, T. E., Computer modeling techniques for flapping-wing aerodynamics of a locust, Comput. Fluids, 85, 125-134 (2013) · Zbl 1290.76170
[28] Takizawa, K.; Tezduyar, T. E.; Kostov, N., Sequentially-coupled space – time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV, Comput Mech, 54, 213-233 (2014)
[29] Takizawa, K.; Tezduyar, T. E.; Buscher, A., Space-time computational analysis of MAV flapping-wing aerodynamics with wing clapping, Comput Mech, 55, 1131-1141 (2015)
[30] Takizawa, K.; Schjodt, K.; Puntel, A.; Kostov, N.; Tezduyar, T. E., Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent, Comput Mech, 50, 675-686 (2012) · Zbl 1311.76157
[31] Takizawa, K.; Schjodt, K.; Puntel, A.; Kostov, N.; Tezduyar, T. E., Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms, Comput Mech, 51, 1061-1073 (2013) · Zbl 1366.76106
[32] Takizawa, K.; Tezduyar, T. E.; Buscher, A.; Asada, S., Space-time fluid mechanics computation of heart valve models, Comput Mech, 54, 973-986 (2014) · Zbl 1311.74083
[33] Suito, H.; Takizawa, K.; Huynh, V. Q.H.; Sze, D.; Ueda, T., FSI Analysis of the blood flow and geometrical characteristics in the thoracic aorta, Comput Mech, 54, 1035-1045 (2014) · Zbl 1311.74044
[34] Takizawa, K.; Montes, D.; McIntyre, S.; Tezduyar, T. E., Space-time VMS methods for modeling of incompressible flows at high reynolds numbers, Math Models Methods Appl Sci, 23, 223-248 (2013) · Zbl 1261.76037
[35] Takizawa, K.; Montes, D.; Fritze, M.; McIntyre, S.; Boben, J.; Tezduyar, T. E., Methods for FSI modeling of spacecraft parachute dynamics and cover separation, Math Models Methods Appl Sci, 23, 307-338 (2013) · Zbl 1261.76013
[36] Takizawa, K.; Tezduyar, T. E.; Boben, J.; Kostov, N.; Boswell, C.; Buscher, A., Fluid – structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity, Comput Mech, 52, 1351-1364 (2013) · Zbl 1398.74097
[37] Takizawa, K.; Tezduyar, T. E.; Buscher, A.; Asada, S., Space-time interface-tracking with topology change (ST-TC), Comput Mech, 54, 4, 955-971 (2014) · Zbl 1311.74045
[38] Takizawa, K.; Tezduyar, T. E.; Boswell, C.; Kolesar, R.; Montel, K., FSI Modeling of the reefed stages and disreefing of the orion spacecraft parachutes, Comput Mech, 54, 1203-1220 (2014)
[39] Takizawa, K.; Tezduyar, T. E.; Boswell, C.; Tsutsui, Y.; Montel, K., Special methods for aerodynamic-moment calculations from parachute FSI modeling, Comput Mech, 55, 1059-1069 (2015)
[40] Takizawa, K.; Tezduyar, T. E.; Kolesar, R., FSI Modeling of the orion spacecraft drogue parachutes, Comput Mech, 55, 1167-1179 (2015) · Zbl 1325.74169
[41] Takizawa, K.; Tezduyar, T. E.; Kuraishi, T., Multiscale ST methods for thermo-fluid analysis of a ground vehicle and its tires, Math Models Methods Appl Sci, 25, 2227-2255 (2015) · Zbl 1325.76139
[42] Takizawa, K.; Tezduyar, T. E., New directions in space – time computational methods, (Bazilevs, Y.; Takizawa, K., Advances in computational fluid – structure interaction and flow simulation: new methods and challenging computations. Modeling and Simulation in Science, Engineering and Technology; Springer. ISBN 978-3-319-40825-5 (2016)), 159-178 · Zbl 1356.76291
[43] Takizawa, K.; Tezduyar, T. E.; Otoguro, Y.; Terahara, T.; Kuraishi, T.; Hattori, H., Turbocharger flow computations with the space-time isogeometric analysis (ST-IGA), Comput Fluids, 142, 15-20 (2017) · Zbl 1390.76689
[44] Takizawa, K.; Tezduyar, T. E.; Asada, S.; Kuraishi, T., Space – time method for flow computations with slip interfaces and topology changes (ST-SI-TC), Comput Fluids, 141, 124-134 (2016) · Zbl 1390.76358
[45] Takizawa, K.; Tezduyar, T. E.; Terahara, T., Ram-air parachute structural and fluid mechanics computations with the space-time isogeometric analysis (ST-IGA), Comput Fluids, 141, 191-200 (2016) · Zbl 1390.76359
[46] Bazilevs, Y.; Korobenko, A.; Deng, X.; Yan, J., Fluid – structure interaction modeling for fatigue-damage prediction in full-scale wind-turbine blades, J Appl Mech, 83, 6, 061010 (2016)
[47] Yan, J.; Korobenko, A.; Deng, X.; Bazilevs, Y., Computational free-surface fluid – structure interaction with application to floating offshore wind turbines, Comput Fluids, 141, 155-174 (2016) · Zbl 1390.76376
[48] Yan, J.; Deng, X.; Korobenko, A.; Bazilevs, Y., Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines, Comput Fluids, 158, 157-166 (2017) · Zbl 1390.86027
[49] Korobenko, A.; Yan, J.; Gohari, S.; Sarkar, S.; Bazilevs, Y., FSI simulation of two back-to-back wind turbines in atmospheric boundary layer flow, Comput Fluids, 158, 167-175 (2017) · Zbl 1390.86036
[50] Takizawa, K.; Tezduyar, T. E.; Terahara, T.; Sasaki, T., Heart valve flow computation with the integrated space-time VMS, slip interface, topology change and isogeometric discretization methods, Comput Fluids, 158, 176-188 (2017) · Zbl 1390.76944
[51] Takizawa, K.; Tezduyar, T. E.; Hattori, H., Computational analysis of flow-driven string dynamics in turbomachinery, Comput Fluids, 142, 109-117 (2017) · Zbl 1390.76011
[52] Otoguro, Y.; Takizawa, K.; Tezduyar, T. E., Space-time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method, Comput Fluids, 158, 189-200 (2017) · Zbl 1390.76345
[53] Takizawa K., Tezduyar T.E., Otoguro Y. Stabilization and discontinuity-capturing parameters for spacetime flow computations with finite element and isogeometric discretizations; 2018. Computational Mechanics, published online. doi:10.1007/s00466-018-1557-x; Takizawa K., Tezduyar T.E., Otoguro Y. Stabilization and discontinuity-capturing parameters for spacetime flow computations with finite element and isogeometric discretizations; 2018. Computational Mechanics, published online. doi:10.1007/s00466-018-1557-x · Zbl 1462.76128
[54] Scotta, R.; Lazzari, M.; Stecca, E.; Cotela, J.; Rossi, R., Numerical wind tunnel for aerodynamic and aeroelastic characterization of bridge deck sections, Comput Struct, 167, 96-114 (2016)
[55] Tezduyar, T. E.; Behr, M.; Mittal, S.; Johnson, A. A., Computation of unsteady incompressible flows with the finite element methods – space – time formulations, iterative strategies and massively parallel implementations, New methods in transient analysis, 7-24 (1992), ASME: ASME New York
[56] Tezduyar, T.; Aliabadi, S.; Behr, M.; Johnson, A.; Mittal, S., Parallel finite-element computation of 3D flows, Comput (Long Beach Calif), 26, 10, 27-36 (1993)
[57] Johnson, A. A.; Tezduyar, T. E., Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces, Comput Methods Appl Mech Eng, 119, 73-94 (1994) · Zbl 0848.76036
[58] Tezduyar, T., Finite element interface-tracking and interface-capturing techniques for flows with moving boundaries and interfaces, Proceedings of the ASME symposium on fluid-physics and heat transfer for macro- and micro-scale gas-liquid and phase-change flows (CD-ROM) (2001), ASME: ASME New York, New York
[59] Tezduyar, T. E., Stabilized finite element formulations and interface-tracking and interface-capturing techniques for incompressible flows, (Hafez, M. M., Numerical simulations of incompressible flows (2003), World Scientific: World Scientific New Jersey), 221-239 · Zbl 1059.76038
[60] Stein, K.; Tezduyar, T. E.; Benney, R., Automatic mesh update with the solid-extension mesh moving technique, Comput Methods Appl Mech Eng, 193, 21-22, 2019-2032 (2004) · Zbl 1067.74587
[61] Svend Ole Hansen APS, The Hardanger bridge: static and dynamic wind tunnel tests with a section model. Technical report, prepared for Norwegian Public Roads Administration, Tech. Rep. (2006)
[62] de Miranda, S.; Patruno, L.; Ubertini, F.; Vairo, G., On the identification of flutter derivatives of bridge decks via RANS turbulence models: benchmarking on rectangular prisms, Eng Struct, 76, 359-370 (2014)
[63] Patruno, L., Accuracy of numerically evaluated flutter derivatives of bridge deck sections using RANS: effects on the flutter onset velocity, Eng Struct, 89, 49-65 (2015)
[64] Sarwar, M. W.; Ishihara, T.; Shimada, K.; Yamasaki, Y.; Ikeda, T., Prediction of aerodynamic characteristics of a box girder bridge section using the LES turbulence model, J Wind Eng Ind Aerodyn, 96, 10-11, 1895-1911 (2008)
[65] Takizawa, K.; Bazilevs, Y.; Tezduyar, T. E.; Hsu, M.-C.; Øiseth, O.; Mathisen, K. M., Engineering analysis and design with ALE-VMS and space-Time methods, Arch Comput Methods Eng, 21, 4, 481-508 (2014) · Zbl 1348.74104
[66] Bai, Y.; Sun, D.; Lin, J., Three dimensional numerical simulations of long-span bridge aerodynamics, using block-iterative coupling and DES, Comput Fluids, 39, 9, 1549-1561 (2010) · Zbl 1245.76033
[67] Šarkić, A.; Fisch, R.; Höffer, R.; Bletzinger, K. U., Bridge flutter derivatives based on computed, validated pressure fields, J Wind Eng Ind Aerodyn, 104-106, 141-151 (2012)
[68] Brusiani, F.; Miranda, S. D.; Patruno, L.; Ubertini, F.; Vaona, P., On the evaluation of bridge deck flutter derivatives using RANS turbulence models, J Wind Eng, 119, 39-47 (2013)
[69] Bai, Y.; Yang, K.; Sun, D.; Zhang, Y.; Kennedy, D.; Williams, F., Numerical aerodynamic analysis of bluff bodies at a high Reynolds number with three-dimensional CFD modeling, Sci China: Phys Mech Astron, 56, 2, 277-289 (2013)
[70] Larsen, A.; Walther, J. H., Discrete vortex simulation of flow around five generic bridge deck sections, J Wind Eng Ind Aerodyn, 77-78, 591-602 (1998)
[71] Siedziako, B.; Øiseth, O.; Rønnquist, A., An enhanced forced vibration rig for wind tunnel testing of bridge deck section models in arbitrary motion, J Wind Eng Ind Aerodyn, 164, February, 152-163 (2017)
[72] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 32, 199-259 (1982) · Zbl 0497.76041
[73] Hughes, T. J.R.; Tezduyar, T. E., Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible euler equations, Comput Methods Appl Mech Eng, 45, 217-284 (1984) · Zbl 0542.76093
[74] Tezduyar, T. E.; Park, Y. J., Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations, Comput Methods Appl Mech Eng, 59, 307-325 (1986) · Zbl 0593.76096
[75] Hughes, T. J.R.; Franca, L. P.; Balestra, M., A new finite element formulation for computational fluid dynamics: v. circumventing the Babuška-Brezzi condition: a stable petrov – galerkin formulation of the stokes problem accommodating equal-order interpolations, Comput Methods Appl Mech Eng, 59, 85-99 (1986) · Zbl 0622.76077
[76] Tezduyar, T. E.; Osawa, Y., Finite element stabilization parameters computed from element matrices and vectors, Comput Methods Appl Mech Eng, 190, 411-430 (2000) · Zbl 0973.76057
[77] Tezduyar, T. E., Computation of moving boundaries and interfaces and stabilization parameters, Int J Numer Methods Fluids, 43, 555-575 (2003) · Zbl 1032.76605
[78] Hughes, T. J.R.; Scovazzi, G.; Franca, L. P., Multiscale and stabilized methods, (Stein, E.; de Borst, R.; Hughes, T. J.R., Encyclopedia of computational mechanics, Vol. 3, Fluids (2004), Wiley)
[79] Tezduyar, T. E.; Sathe, S., Modeling of fluid – structure interactions with the space – time finite elements: solution techniques, Int J Numer Methods Fluids, 54, 855-900 (2007) · Zbl 1144.74044
[80] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Zhang, Y., Isogeometric fluid – structure interaction: theory, algorithms, and computations, Comput Mech, 43, 3-37 (2008) · Zbl 1169.74015
[81] Hsu, M.-C.; Bazilevs, Y.; Calo, V. M.; Tezduyar, T. E.; Hughes, T. J.R., Improving stability of stabilized and multiscale formulations in flow simulations at small time steps, Comput Methods Appl Mech Eng, 199, 828-840 (2010) · Zbl 1406.76028
[82] Takizawa, K.; Tezduyar, T. E., Multiscale space – time fluid – structure interaction techniques, Comput Mech, 48, 247-267 (2011) · Zbl 1398.76128
[83] Takizawa, K.; Tezduyar, T. E., Space-Time fluid-Structure interaction methods, Math Models Methods Appl Sci, 22, supp02, 1230001 (2012) · Zbl 1248.76118
[84] Chung, J.; Hulbert, G. M., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(α\) method, J Appl Mech, 60, 2, 371-375 (1993) · Zbl 0775.73337
[85] Jansen, K. E.; Whiting, C. H.; Hulbert, G. M., A generalized-\(α\) method for integrating the filtered Navier-Stokes equations with a stabilized finite element method, Comput Methods Appl Mech Eng, 190, 305-319 (2000) · Zbl 0973.76048
[86] Parkinson, G.; Brooks, N., On the aeroelastic instability of bluff cylinders, J Appl Mech, 47, 557-566 (1961) · Zbl 0099.21402
[87] Tamura, Y.; Kareem, A., Advanced structural wind engineering (2013), Springer Japan, Vol. I
[88] Theodorsen, T., General theory of aerodynamic instability and the mechanism of flutter, NACA Technical Report No. 496 (1935) · JFM 60.1397.05
[89] Scanlan, R. H.; Tomko, J., Airfoil and bridge deck flutter derivatives, J Eng Mech Division, 97, 6, 1717-1737 (1971)
[90] Jain, A.; Jones, N. P.; Scanlan, R. H., Coupled flutter and buffeting analysis of long-Span bridges, J Struct Eng, 122, 7, 716-725 (1996)
[91] Singh, L.; Jones, N. P.; Scanlan, R. H.; Lorendeaux, O., Identification of lateral flutter derivatives of bridge decks, J Wind Eng Ind Aerodyn, 60, 1-3, 81-89 (1996)
[92] Scanlan, R. H.; Sabzevari, A., Experimental aerodynamic coefficients in the analytical study of suspension bridge flutter, J Mech Eng Sci, 11, 3, 234-242 (1969)
[93] Halfman, R. L., Experimental aerodynamic derivatives of a sinusoidally oscillating airfoil in two-dimensional flow (1952)
[94] Haan, F. L.; Kareem, A.; Szewczyk, A. A., The effects of turbulence on the pressure distribution around a rectangular prism, J Wind Eng Ind Aerodyn, 77, 381-392 (1998)
[95] Sarkar, R. R.; Jones, N. P.; Scanlan, R. H., Identification of aeroelastic parameters of flexible bridges., ASCE J Eng Mech, 120, 8, 1718-1742 (1994)
[96] Sarkar, P. P.; Caracoglia, L.; Haan, F. L.; Sato, H.; Murakoshi, J., Comparative and sensitivity study of flutter derivatives of selected bridge deck sections, part 1: analysis of inter-laboratory experimental data, Eng Struct, 31, 1, 158-169 (2009)
[97] Zanotti, A.; Nilifard, R.; Gibertini, G.; Guardone, A.; Quaranta, G., Assessment of 2D / 3D numerical modeling for deep dynamic stall experiments, J Fluids Struct, 51, 1-19 (2014)
[98] Karanam, A. K.; Jansen, K. E.; Whiting, C. H., Geometry based pre-processor for parallel fluid dynamic simulations using a hierarchical basis, Eng Comput, 24, 1, 17-26 (2007)
[99] Hsu, M.-C.; Akkerman, I.; Bazilevs, Y., High-performance computing of wind turbine aerodynamics using isogeometric analysis, Comput Fluids, 49, 1, 93-100 (2011) · Zbl 1271.76276
[100] Bianchi, G., Electronic filter simulation & design (2007), McGraw Hill Professional
[101] Helgedagsrud, T. A.; Mathisen, K. M.; Bazilevs, Y.; Øiseth, O.; Korobenko, A., Using ALE-VMS to compute wind forces on moving bridge decks, (Skallerud, B.; Andersson, H. I., Proceedings of MekIT’17 ninth national conference on computational mechanics (2017), CMIME: CMIME Barcelona, Spain), 169-189
[102] Øiseth, O.; Rönnquist, A.; Sigbjörnsson, R., Simplified prediction of wind-induced response and stability limit of slender long-span suspension bridges, based on modified quasi-steady theory: a case study, J Wind Eng Ind Aerodyn, 98, 12, 730-741 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.