Medeiros, L. A.; Milla Miranda, M. Local solutions for a nonlinear unilateral problem. (English) Zbl 0613.35051 Rev. Roum. Math. Pures Appl. 31, 371-382 (1986). It is proved existence and uniqueness of local solutions for a unilateral problem for the operators \[ u\mapsto \partial^ 2u/\partial t^ 2+M(\int_{\Omega}| \nabla u(x,t)|^ 2 dx)(-\Delta u) \] \[ u\to \partial^ 2u/\partial t^ 2+M(\int_{\Omega}| \nabla u(x,t)|^ 2 dx+\int_{\Omega}u^ 2(x,t)dx)(-\Delta u+u), \] where the real function \(\lambda\mapsto M(\lambda)\) defined for all \(\lambda\geq 0\) is continuously differentiable and \(M(\lambda)\geq m_ 0>0\) for all \(\lambda\geq 0\). Reviewer: V.Kostova Cited in 6 Documents MSC: 35L85 Unilateral problems for linear hyperbolic equations and variational inequalities with linear hyperbolic operators 35A07 Local existence and uniqueness theorems (PDE) (MSC2000) Keywords:existence; uniqueness; local solutions; unilateral problem PDF BibTeX XML Cite \textit{L. A. Medeiros} and \textit{M. Milla Miranda}, Rev. Roum. Math. Pures Appl. 31, 371--382 (1986; Zbl 0613.35051)