×

zbMATH — the first resource for mathematics

Higher-order Cahn-Hilliard equations with dynamic boundary conditions. (English) Zbl 1366.35062
Summary: Our aim in this paper is to study the well-posedness and the dissipativity of higher-order Cahn-Hilliard equations with dynamic boundary conditions. More precisely, we prove the existence and uniqueness of solutions and the existence of the global attractor.

MSC:
35K35 Initial-boundary value problems for higher-order parabolic equations
35B41 Attractors
35Q79 PDEs in connection with classical thermodynamics and heat transfer
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berry, J.; Elder, K. R.; Grant, M., Simulation of an atomistic dynamic field theory for monatomic liquids: freezing and Glass formation, Phys. Rev. E, 77, (2008)
[2] Berry, J.; Grant, M.; Elder, K. R., Diffusive atomistic dynamics of edge dislocations in two dimensions, Phys. Rev. E, 73, (2006)
[3] Caginalp, G.; Esenturk, E., Anisotropic phase field equations of arbitrary order, Discrete Contin. Dyn. Syst. Ser. S, 4, 311-350, (2011) · Zbl 1227.35138
[4] Cahn, J. W., On spinodal decomposition, Acta Metall., 9, 795-801, (1961)
[5] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system I. interfacial free energy, J. Chem. Phys., 2, 258-267, (1958)
[6] Chen, F.; Shen, J., Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems, Commun. Comput. Phys., 13, 1189-1208, (2013) · Zbl 1388.65117
[7] Cherfils, L.; Miranville, A.; Peng, S., Higher-order models in phase separation, J. Appl. Anal. Comput., 7, 39-56, (2017)
[8] Cherfils, L.; Miranville, A.; Zelik, S., The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79, 561-596, (2011) · Zbl 1250.35129
[9] Cherfils, L.; Petcu, M., A numerical analysis of the Cahn-Hilliard equation with non-permeable walls, Numer. Math., 128, 517-549, (2014) · Zbl 1325.65133
[10] Cherfils, L.; Petcu, M.; Pierre, M., A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 27, 1511-1533, (2010) · Zbl 1204.65113
[11] Chill, R.; Fašangová, E.; Prüss, J., Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions, Math. Nachr., 279, 1448-1462, (2006) · Zbl 1107.35058
[12] de Gennes, P. G., Dynamics of fluctuations and spinodal decomposition in polymer blends, J. Chem. Phys., 72, 4756-4763, (1980) · Zbl 1110.82310
[13] Emmerich, H.; Löwen, H.; Wittkowski, R.; Gruhn, T.; Tóth, G. I.; Tegze, G.; Gránásy, L., Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview, Adv. Phys., 61, 665-743, (2012)
[14] Fischer, H. P.; Maass, P.; Dieterich, W., Novel surface modes in spinodal decomposition, Phys. Rev. Lett., 79, 893-896, (1997)
[15] Fischer, H. P.; Maass, P.; Dieterich, W., Diverging time and length scales of spinodal decomposition modes in thin flows, Europhys. Lett., 42, 49-54, (1998)
[16] Fischer, H. P.; Reinhard, J.; Dieterich, W.; Gouyet, J.-F.; Maass, P.; Majhofer, A.; Reinel, D., Time-dependent density functional theory and the kinetics of lattice gas systems in contact with a wall, J. Chem. Phys., 108, 3028-3037, (1998)
[17] Gal, C. G., A Cahn-Hilliard model in bounded domains with permeable walls, Math. Methods Appl. Sci., 29, 2009-2036, (2006) · Zbl 1109.35057
[18] Galenko, P.; Danilov, D.; Lebedev, V., Phase-field-crystal and Swift-Hohenberg equations with fast dynamics, Phys. Rev. E, 79, (2009)
[19] Gilardi, G.; Miranville, A.; Schimperna, G., On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal., 8, 881-912, (2009) · Zbl 1172.35417
[20] Gilardi, G.; Miranville, A.; Schimperna, G., Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Chin. Ann. Math. Ser. B, 31, 679-712, (2010) · Zbl 1223.35067
[21] Goldstein, G. R.; Miranville, A.; Schimperna, G., A Cahn-Hilliard equation in a domain with non-permeable walls, Phys. D, 240, 754-766, (2011) · Zbl 1228.35051
[22] Gompper, G.; Kraus, M., Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations, Phys. Rev. E, 47, 4289-4300, (1993)
[23] Gompper, G.; Kraus, M., Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations, Phys. Rev. E, 47, 4301-4312, (1993)
[24] Grasselli, M.; Wu, H., Well-posedness and longtime behavior for the modified phase-field crystal equation, Math. Models Methods Appl. Sci., 24, 2743-2783, (2014) · Zbl 1304.35690
[25] Grasselli, M.; Wu, H., Robust exponential attractors for the modified phase-field crystal equation, Discrete Contin. Dyn. Syst., 35, 2539-2564, (2015) · Zbl 1332.35360
[26] Hu, Z.; Wise, S. M.; Wang, C.; Lowengrub, J. S., Stable finite difference, nonlinear multigrid simulation of the phase field crystal equation, J. Comput. Phys., 228, 5323-5339, (2009) · Zbl 1171.82015
[27] Kenzler, R.; Eurich, F.; Maass, P.; Rinn, B.; Schropp, J.; Bohl, E.; Dieterich, W., Phase separation in confined geometries: solving the Cahn-Hilliard equation with generic boundary conditions, Comput. Phys. Commun., 133, 139-157, (2001) · Zbl 0985.65114
[28] Kohn, R. V.; Otto, F., Upper bounds for coarsening rates, Comm. Math. Phys., 229, 375-395, (2002) · Zbl 1004.82011
[29] Korzec, M.; Nayar, P.; Rybka, P., Global weak solutions to a sixth order Cahn-Hilliard type equation, SIAM J. Math. Anal., 44, 3369-3387, (2012) · Zbl 1270.35252
[30] Korzec, M.; Rybka, P., On a higher order convective Cahn-Hilliard type equation, SIAM J. Appl. Math., 72, 1343-1360, (2012) · Zbl 1257.35109
[31] Langer, J. S., Theory of spinodal decomposition in alloys, Ann. Phys., 65, 53-86, (1975)
[32] Maier-Paape, S.; Wanner, T., Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions. part I: probability and wavelength estimate, Comm. Math. Phys., 195, 435-464, (1998) · Zbl 0931.35064
[33] Maier-Paape, S.; Wanner, T., Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions: nonlinear dynamics, Arch. Ration. Mech. Anal., 151, 187-219, (2000) · Zbl 0954.35089
[34] Miranville, A., Asymptotic behavior of a sixth-order Cahn-Hilliard system, Cent. Eur. J. Math., 12, 141-154, (2014) · Zbl 1286.35047
[35] Miranville, A., Sixth-order Cahn-Hilliard equations with logarithmic nonlinear terms, Appl. Anal., 94, 2133-2146, (2015) · Zbl 1332.35149
[36] Miranville, A., Sixth-order Cahn-Hilliard systems with dynamic boundary conditions, Math. Methods Appl. Sci., 38, 1127-1145, (2015) · Zbl 1323.35093
[37] Miranville, A., On the phase-field-crystal model with logarithmic nonlinear terms, RACSAM, 110, 145-157, (2016) · Zbl 1336.35086
[38] Miranville, A.; Zelik, S., Exponential attractors for the Cahn-Hilliard equation with dynamic boundary conditions, Math. Methods Appl. Sci., 28, 709-735, (2005) · Zbl 1068.35020
[39] Miranville, A.; Zelik, S., Attractors for dissipative partial differential equations in bounded and unbounded domains, (Dafermos, C. M.; Pokorny, M., Handbook of Differential Equations, Evolutionary Partial Differential Equations, vol. 4, (2008), Elsevier Amsterdam), 103-200 · Zbl 1221.37158
[40] Miranville, A.; Zelik, S., The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dyn. Syst., 28, 275-310, (2010) · Zbl 1203.35046
[41] Nabet, F., Convergence of a finite-volume scheme for the Cahn-Hilliard equation with dynamic boundary conditions, IMA J. Numer. Anal., (2017), in press
[42] F. Nabet, An error estimate for a finite-volume scheme for the Cahn-Hilliard equation with dynamic boundary conditions, submitted for publication. · Zbl 1304.65199
[43] Novick-Cohen, A., The Cahn-Hilliard equation: mathematical and modeling perspectives, Adv. Math. Sci. Appl., 8, 965-985, (1998) · Zbl 0917.35044
[44] Novick-Cohen, A., The Cahn-Hilliard equation, (Dafermos, C. M.; Pokorny, M., Handbook of Differential Equations, Evolutionary Partial Differential Equations, (2008), Elsevier Amsterdam), 201-228 · Zbl 1185.35001
[45] Pawlow, I.; Schimperna, G., On a Cahn-Hilliard model with nonlinear diffusion, SIAM J. Math. Anal., 45, 31-63, (2013) · Zbl 1276.35101
[46] Pawlow, I.; Schimperna, G., A Cahn-Hilliard equation with singular diffusion, J. Differential Equations, 254, 779-803, (2013) · Zbl 1272.35115
[47] Pawlow, I.; Zajaczkowski, W., A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures, Commun. Pure Appl. Anal., 10, 1823-1847, (2011) · Zbl 1229.35108
[48] Pawlow, I.; Zajaczkowski, W., On a class of sixth order viscous Cahn-Hilliard type equations, Discrete Contin. Dyn. Syst. Ser. S, 6, 517-546, (2013) · Zbl 1276.35100
[49] Prüss, J.; Racke, R.; Zheng, S., Maximal regularity and asymptotic behavior of solutions for the Cahn-Hilliard equation with dynamic boundary conditions, Ann. Mat. Pura Appl. (4), 185, 627-648, (2006) · Zbl 1232.35081
[50] Savina, T. V.; Golovin, A. A.; Davis, S. H.; Nepomnyashchy, A. A.; Voorhees, P. W., Faceting of a growing crystal surface by surface diffusion, Phys. Rev. E, 67, (2003)
[51] Temam, R., Infinite-dimensional dynamical systems in mechanics and physics, Appl. Math. Sci., vol. 68, (1997), Springer-Verlag New York · Zbl 0871.35001
[52] Temam, R., Navier-Stokes equations: theory and numerical analysis, Amer. Math. Soc., vol. 343, (2001), AMS Chelsea Publishing Providence, Rhode Island · Zbl 0981.35001
[53] Torabi, S.; Lowengrub, J.; Voigt, A.; Wise, S., A new phase-field model for strongly anisotropic systems, Proc. R. Soc. A, 465, 1337-1359, (2009) · Zbl 1186.80014
[54] Wang, C.; Wise, S. M., Global smooth solutions of the modified phase field crystal equation, Methods Appl. Anal., 17, 191-212, (2010) · Zbl 1217.35040
[55] Wang, C.; Wise, S. M., An energy stable and convergent finite difference scheme for the modified phase field crystal equation, SIAM J. Numer. Anal., 49, 945-969, (2011) · Zbl 1230.82005
[56] Wise, S. M.; Wang, C.; Lowengrub, J. S., An energy stable and convergent finite difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47, 2269-2288, (2009) · Zbl 1201.35027
[57] Wu, H.; Zheng, S., Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions, J. Differential Equations, 204, 511-531, (2004) · Zbl 1068.35018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.