zbMATH — the first resource for mathematics

On special fiber rings of modules. (English) Zbl 1429.13008
The author studies properties concerning the multiplicity as well as the Cohen-Macaulay and Gorenstein properties of the special fiber ring of a finitely generated \(R\)-module over a Noetherian local ring \(R\) with infinite residue field. More precisely, the author deals with the special fiber of the Rees algebra, the so-called special fiber ring, of finitely generated modules over a Noetherian local ring \((R,\mathfrak{m})\) in order to study the Cohen-Macaulay and the Gorenstein properties of this blowup algebra. The case of modules of finite colength in a free \(R\)-module, where \(R\) is one-dimensional and Cohen-Macaulay, is considered. Regarding the Gorenstein property, he studies in a more general context where \(R\) is Cohen-Macaulay of arbitrary dimension and the module is not necessarily of finite colength. The investigation of certain numerical invariants, such as analytic spread, multiplicity, and reduction number has a crucial role in the study of the special fiber ring.
13A30 Associated graded rings of ideals (Rees ring, form ring), analytic spread and related topics
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
13H15 Multiplicity theory and related topics
13A02 Graded rings
13C15 Dimension theory, depth, related commutative rings (catenary, etc.)
13D40 Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series
13E15 Commutative rings and modules of finite generation or presentation; number of generators
Full Text: DOI
[1] Aberbach, I. M. and Huneke, C., An improved Briançon-Skoda theorem with applications to the Cohen-Macaulayness of Rees algebras. Math. Ann.297(1993), 343-369. https://doi.org/10.1007/BF01459507. · Zbl 0788.13001
[2] Brennan, J., Ulrich, B., and Vasconcelos, W. V., The Buchsbaum-Rim polynomial of a module. J. Algebra241(2001), 379-392. https://doi.org/10.1006/jabr.2001.8764. · Zbl 1071.13504
[3] Bruns, W. and Herzog, J., Cohen-Macaulay rings. Revised Edition. Cambridge University Press, Cambridge, 1998. · Zbl 0909.13005
[4] Buchsbaum, D. and Rim, D. S., A generalized Koszul complex. II. Depth and multiplicity. Trans. Amer. Math. Soc.111(1964), 197-224. https://doi.org/10.2307/1994241. · Zbl 0131.27802
[5] Chan, C.-Y. J., Liu, J.-C., and Ulrich, B., Buchsbaum-Rim multiplicities as Hilbert-Samuel multiplicities. J. Algebra319(2008), 4413-4425. https://doi.org/10.1016/j.jalgebra.2007.12.025. · Zbl 1149.13012
[6] Corso, A., Ghezzi, L., Polini, C., and Ulrich, B., Cohen-Macaulayness of special fiber rings. Comm. Algebra31(2003), 3713-3734. https://doi.org/10.1081/AGB-120022439. · Zbl 1057.13007
[7] Corso, A., Polini, C., and Vasconcelos, W., Multiplicity of the special fiber of blowups. Math. Proc. Cambridge Philos. Soc.140(2006), 207-219. https://doi.org/10.1017/S0305004105009023. · Zbl 1098.13030
[8] Cortadellas, T. and Zarzuela, S., On the structure of the fiber cone of ideals with analytic spread one. J. Algebra317(2007), 759-785. https://doi.org/10.1016/j.jalgebra.2007.02.044. · Zbl 1141.13003
[9] D’ Cruz, C. and Verma, J. K., Hilbert series of fiber cones of ideals with almost minimal mixed multiplicity. J. Algebra251(2002), 98-109. https://doi.org/10.1006/jabr.2001.9139.
[10] Eisenbud, D. and Huneke, C., Cohen-Macaulay Rees algebras and their specialization. J. Algebra81(1983), 202-224. https://doi.org/10.1016/0021-8693(83)90216-8. · Zbl 0528.13024
[11] Eisenbud, D., Huneke, C., and Ulrich, B., What is the Rees algebra of a module?Proc. Amer. Math. Soc.131(2002), 701-708. https://doi.org/10.1090/S0002-9939-02-06575-9. · Zbl 1038.13002
[12] Goto, S., Hayasaka, F., Kurano, K., and Nakamura, Y., Rees algebras of the second syzygy module of the residue field of a regular local ring. Contemp. Math.390(2005), 97-108. https://doi.org/10.1090/conm/390/07296. · Zbl 1191.13030
[13] Heinzer, W. and Kim, M.-K., Properties of the fiber cone of ideals in local rings. Comm. Algebra31(2003), 3529-3546. https://doi.org/10.1081/AGB-120022240. · Zbl 1090.13014
[14] Huckaba, S. and Huneke, C., Rees algebras of ideals having small analytic deviation. Trans. Amer. Math. Soc.339(1993), 373-402. https://doi.org/10.2307/2154225. · Zbl 0813.13009
[15] Huckaba, S. and Marley, T., Depth properties of Rees algebras and associated graded rings. J. Algebra156(1993), 259-271. https://doi.org/10.1006/jabr.1993.1075. · Zbl 0813.13010
[16] Huckaba, S. and Marley, T., On associated graded rings of normal ideals. J. Algebra222(1999), 146-163. https://doi.org/10.1006/jabr.1999.7985. · Zbl 0941.13003
[17] Huneke, C., On the associated graded ring of an ideal. Illinois J. Math.26(1982), 121-137. · Zbl 0479.13008
[18] Huneke, C. and Sally, J., Birational extensions in dimension two and integrally closed ideals. J. Algebra115(1988), 481-500. https://doi.org/10.1016/0021-8693(88)90274-8. · Zbl 0658.13017
[19] Huneke, C. and Swanson, I., Integral closure of ideals, rings and modules. . Cambridge University Press, Cambridge, 2006. · Zbl 1117.13001
[20] Jayanthan, A. V., Puthenpurakal, T. J., and Verma, J. K., On fiber cones of \(\mathfrak{m} \)-primary ideals. Canad. J. Math. 59(2007), 109-126. https://doi.org/10.4153/CJM-2007-005-8. · Zbl 1124.13015
[21] Korb, T. and Nakamura, Y., On the Cohen-Macaulayness of multi-Rees algebras and Rees algebras of powers of ideals. J. Math. Soc. Japan50(1998), 451-467. https://doi.org/10.2969/jmsj/05020451. · Zbl 0902.13008
[22] Kurano, K., On Macaulayfication obtained by a blow-up whose center is an equi-multiple ideal. J. Algebra190(1997), 405-434. https://doi.org/10.1006/jabr.1996.6904. · Zbl 0876.13010
[23] Lima, P. H. and Jorge Pérez, V. H., On the Gorenstein property of the fiber cone to filtration. Int. J. Algebra8(2014), 159-174. https://doi.org/10.12988/ija.2014.312135.
[24] Lin, K.-N. and Polini, C., Rees algebras of truncations of complete intersections. J. Algebra410(2014), 36-52. https://doi.org/10.1016/j.jalgebra.2014.03.022. · Zbl 1304.13006
[25] Lipman, J., Cohen-Macaulayness in graded algebras. Math. Res. Lett.1(1994), 149-157. https://doi.org/10.4310/MRL.1994.v1.n2.a2. · Zbl 0844.13006
[26] Miranda-Neto, C. B., Graded derivation modules and algebraic free divisors. J. Pure Appl. Algebra219(2015), 5442-5466. https://doi.org/10.1016/j.jpaa.2015.05.026. · Zbl 1327.13096
[27] Miranda-Neto, C. B., On Aluffi’s problem and blowup algebras of certain modules. J. Pure Appl. Algebra221(2017), 799-820. https://doi.org/10.1016/j.jpaa.2016.08.004. · Zbl 1359.13028
[28] Ooishi, A., On the Gorenstein property of the associated graded ring and the Rees algebra of an ideal. J. Algebra155(1993), 397-414. https://doi.org/10.1006/jabr.1993.1051. · Zbl 0776.13004
[29] Polini, C. and Ulrich, B., Necessary and sufficient conditions for the Cohen-Macaulayness of blowup algebras. Compos. Math.119(1999), 185-207. https://doi.org/10.1023/A:1001704003619. · Zbl 0963.13006
[30] Polini, C. and Xie, Y., j-multiplicity and depth of associated graded modules. J. Algebra379(2013), 31-49. https://doi.org/10.1016/j.jalgebra.2013.01.001. · Zbl 1285.13007
[31] Sancho de Salas, J. B., Blowing-up morphisms with Cohen-Macaulay associated graded rings. In: Géométrie algébrique et applications, I. . Hermann, Paris, 1987, pp. 201-209. · Zbl 0625.14025
[32] Shah, K., On the Cohen-Macaulayness of the fiber cone of an ideal. J. Algebra143(1991), 156-172. https://doi.org/10.1016/0021-8693(91)90257-9.
[33] Simis, A., Ulrich, B., and Vasconcelos, W., Rees algebras of modules. Proc. London Math. Soc.87(2003), 610-646. https://doi.org/10.1112/S0024611502014144. · Zbl 1099.13008
[34] Trung, N. V. and Ikeda, S., When is the Rees algebra Cohen-Macaulay?Comm. Algebra17(1989), 2893-2922. https://doi.org/10.1080/00927878908823885. · Zbl 0696.13015
[35] Trung, N. V., Viet, D. Q., and Zarzuela, S., When is the Rees algebra Gorenstein?J. Algebra175(1995), 137-156. https://doi.org/10.1006/jabr.1995.1179. · Zbl 0827.13012
[36] Vasconcelos, W. V., Arithmetic of blowup algebras. , Cambridge University Press, Cambridge, 1994. https://doi.org/10.1017/CBO9780511574726. · Zbl 0813.13008
[37] Vasconcelos, W. V., Integral closure. Rees algebras, multiplicities, algorithms. . Springer-Verlag, Berlin, 2005. · Zbl 1082.13006
[38] Viet, D. Q., On the multiplicity and the Cohen-Macaulayness of fiber cones of graded algebras. J. Pure Appl. Algebra213(2009), 2104-2116. https://doi.org/10.1016/j.jpaa.2009.03.006. · Zbl 1177.13058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.