Miranda-Neto, Cleto B. A module-theoretic characterization of algebraic hypersurfaces. (English) Zbl 1403.14079 Can. Math. Bull. 61, No. 1, 166-173 (2018). In the introduction, “some of the numerous references” for the past 4 decades came under criticism of the author because “most of the techniques have focused mainly on detecting families of examples and their features...” By contrast, the author’s “goal is to report the following surprising result, which had gone unnoticed and in fact turns out to be a new module-theoretic characterization of hypersurfaces”. More precisely, his main result is formulated as follows: the module of tangent vector fields to an affine algebraic variety over the field of characteristic zero is reflexive if and only if the variety is a hypersurface.Reviewer’s remark: It should be noted that this fact is a very particular case of the well-known statement concerning the behavior of reflexive sheaves on normal varieties (see, e.g., Corollary 1.5 in [R. Hartshorne, Math. Ann. 254, 121–176 (1980; Zbl 0431.14004)]). More precisely, if \(\mathcal G\) is a subsheaf of a reflexive sheaf \(\mathcal F\) given on a normal variety, then \(\mathcal G\) is reflexive if and only if the set of associated primes of the quotient \(\mathcal F/\mathcal G\) consists of points of codimensions 0 and 1 only. Reviewer: Aleksandr G. Aleksandrov (Moskva) Cited in 1 Document MSC: 14J70 Hypersurfaces and algebraic geometry 13N15 Derivations and commutative rings 32S22 Relations with arrangements of hyperplanes 13C05 Structure, classification theorems for modules and ideals in commutative rings 13C10 Projective and free modules and ideals in commutative rings 14N20 Configurations and arrangements of linear subspaces 14C20 Divisors, linear systems, invertible sheaves 32M25 Complex vector fields, holomorphic foliations, \(\mathbb{C}\)-actions Keywords:reflexive modules; hypersurfaces; tangent vector fields; logarithmic vector fields; free divisors PDF BibTeX XML Cite \textit{C. B. Miranda-Neto}, Can. Math. Bull. 61, No. 1, 166--173 (2018; Zbl 1403.14079) Full Text: DOI