×

Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach. (English) Zbl 1332.65114

Summary: Judicious use of interval arithmetic, combined with careful pen and paper estimates, leads to effective strategies for computer assisted analysis of nonlinear operator equations. The method of radii polynomials is an efficient tool for bounding the smallest and largest neighborhoods on which a Newton-like operator associated with a nonlinear equation is a contraction mapping. The method has been used to study solutions of ordinary, partial, and delay differential equations such as equilibria, periodic orbits, solutions of initial value problems, heteroclinic and homoclinic connecting orbits in the \(C^k\) category of functions. In the present work we adapt the method of radii polynomials to the analytic category. For ease of exposition we focus on studying periodic solutions in Cartesian products of infinite sequence spaces. We derive the radii polynomials for some specific application problems and give a number of computer assisted proofs in the analytic framework.

MSC:

65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65G40 General methods in interval analysis
34C25 Periodic solutions to ordinary differential equations
35K57 Reaction-diffusion equations

Software:

INTLAB; Taylor; galepu
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Champneys, Alan R.; Sandstede, Bj{\"o}rn, Numerical computation of coherent structures. Numerical continuation methods for dynamical systems, Underst. Complex Syst., 331-358 (2007), Springer, Dordrecht · Zbl 1129.65071 · doi:10.1007/978-1-4020-6356-5\_11
[2] Lanford, Oscar E., III, A computer-assisted proof of the Feigenbaum conjectures, Bull. Amer. Math. Soc. (N.S.), 6, 3, 427-434 (1982) · Zbl 0487.58017 · doi:10.1090/S0273-0979-1982-15008-X
[3] Koch, Hans; Schenkel, Alain; Wittwer, Peter, Computer-assisted proofs in analysis and programming in logic: a case study, SIAM Rev., 38, 4, 565-604 (1996) · Zbl 0865.68111 · doi:10.1137/S0036144595284180
[4] Day, S.; Junge, O.; Mischaikow, K., A rigorous numerical method for the global analysis of infinite-dimensional discrete dynamical systems, SIAM J. Appl. Dyn. Syst., 3, 2, 117-160 (2004) · Zbl 1059.37068 · doi:10.1137/030600210
[5] [Jay\textunderscoreKons\textunderscoreReview] J. D. Mireles-James and K. Mischaikow, Computational proofs in dynamics, Encyclopedia of Applied Computational Mathematics, 2016. To appear.
[6] Rump, Siegfried M., Verification methods: rigorous results using floating-point arithmetic, Acta Numer., 19, 287-449 (2010) · Zbl 1323.65046 · doi:10.1017/S096249291000005X
[7] Nakao, Mitsuhiro T., Numerical verification methods for solutions of ordinary and partial differential equations, {\rm International Workshops on Numerical Methods and Verification of Solutions, and on Numerical Function Analysis (Ehime/Shimane, 1999)}, Numer. Funct. Anal. Optim., 22, 3-4, 321-356 (2001) · Zbl 1106.65315 · doi:10.1081/NFA-100105107
[8] Gidea, Marian; Zgliczy{\'n}ski, Piotr, Covering relations for multidimensional dynamical systems. II, J. Differential Equations, 202, 1, 59-80 (2004) · Zbl 1096.37031 · doi:10.1016/j.jde.2004.03.014
[9] Day, Sarah; Lessard, Jean-Philippe; Mischaikow, Konstantin, Validated continuation for equilibria of PDEs, SIAM J. Numer. Anal., 45, 4, 1398-1424 (2007) · Zbl 1151.65074 · doi:10.1137/050645968
[10] Gameiro, Marcio; Lessard, Jean-Philippe, Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs, J. Differential Equations, 249, 9, 2237-2268 (2010) · Zbl 1256.35196 · doi:10.1016/j.jde.2010.07.002
[11] van den Berg, Jan Bouwe; Lessard, Jean-Philippe, Chaotic braided solutions via rigorous numerics: chaos in the Swift-Hohenberg equation, SIAM J. Appl. Dyn. Syst., 7, 3, 988-1031 (2008) · Zbl 1408.37062 · doi:10.1137/070709128
[12] Kiss, G{\'a}bor; Lessard, Jean-Philippe, Computational fixed-point theory for differential delay equations with multiple time lags, J. Differential Equations, 252, 4, 3093-3115 (2012) · Zbl 1247.34119 · doi:10.1016/j.jde.2011.11.020
[13] Gameiro, Marcio; Lessard, Jean-Philippe, Efficient rigorous numerics for higher-dimensional PDEs via one-dimensional estimates, SIAM J. Numer. Anal., 51, 4, 2063-2087 (2013) · Zbl 1277.65084 · doi:10.1137/110836651
[14] Gameiro, Marcio; Lessard, Jean-Philippe, Existence of secondary bifurcations or isolas for PDEs, Nonlinear Anal., 74, 12, 4131-4137 (2011) · Zbl 1221.35052 · doi:10.1016/j.na.2011.03.046
[15] Breden, Maxime; Lessard, Jean-Philippe; Vanicat, Matthieu, Global bifurcation diagrams of steady states of systems of PDEs via rigorous numerics: a 3-component reaction-diffusion system, Acta Appl. Math., 128, 113-152 (2013) · Zbl 1277.65088 · doi:10.1007/s10440-013-9823-6
[16] Lessard, Jean-Philippe, Recent advances about the uniqueness of the slowly oscillating periodic solutions of Wright’s equation, J. Differential Equations, 248, 5, 992-1016 (2010) · Zbl 1200.34078 · doi:10.1016/j.jde.2009.11.008
[17] Gameiro, Marcio; Lessard, Jean-Philippe; Mischaikow, Konstantin, Validated continuation over large parameter ranges for equilibria of PDEs, Math. Comput. Simulation, 79, 4, 1368-1382 (2008) · Zbl 1166.65379 · doi:10.1016/j.matcom.2008.03.014
[18] Lessard, Jean-Philippe; Mireles James, Jason D.; Reinhardt, Christian, Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields, J. Dynam. Differential Equations, 26, 2, 267-313 (2014) · Zbl 1351.37107 · doi:10.1007/s10884-014-9367-0
[19] Lessard, Jean-Philippe; Reinhardt, Christian, Rigorous numerics for nonlinear differential equations using Chebyshev series, SIAM J. Numer. Anal., 52, 1, 1-22 (2014) · Zbl 1290.65060 · doi:10.1137/13090883X
[20] [castelli\textunderscoreteismann] R. Castelli and H. Teismann, Rigorous numerics for NLS: bound states, spectra, and controllability. Preprint, 2013. · Zbl 1417.65193
[21] van den Berg, Jan Bouwe; Mireles-James, Jason D.; Lessard, Jean-Philippe; Mischaikow, Konstantin, Rigorous numerics for symmetric connecting orbits: even homoclinics of the Gray-Scott equation, SIAM J. Math. Anal., 43, 4, 1557-1594 (2011) · Zbl 1231.34081 · doi:10.1137/100812008
[22] van den Berg, J. B.; Groothedde, C. M.; Williams, J. F., Rigorous computation of a radially symmetric localized solution in a Ginzburg-Landau problem, SIAM J. Appl. Dyn. Syst., 14, 1, 423-447 (2015) · Zbl 1319.34048 · doi:10.1137/140987973
[23] Correc, Ana{\"i}s; Lessard, Jean-Philippe, Coexistence of nontrivial solutions of the one-dimensional Ginzburg-Landau equation: A computer-assisted proof, European J. Appl. Math., 26, 1, 33-60 (2015) · Zbl 1384.34030 · doi:10.1017/S0956792514000308
[24] Castelli, Roberto; Lessard, Jean-Philippe, Rigorous numerics in Floquet theory: computing stable and unstable bundles of periodic orbits, SIAM J. Appl. Dyn. Syst., 12, 1, 204-245 (2013) · Zbl 1293.37033 · doi:10.1137/120873960
[25] Castelli, Roberto; Lessard, Jean-Philippe; Mireles James, J. D., Parameterization of Invariant Manifolds for Periodic Orbits I: Efficient Numerics via the Floquet Normal Form, SIAM J. Appl. Dyn. Syst., 14, 1, 132-167 (2015) · Zbl 1376.37057 · doi:10.1137/140960207
[26] van den Berg, Jan Bouwe; Lessard, Jean-Philippe; Mischaikow, Konstantin, Global smooth solution curves using rigorous branch following, Math. Comp., 79, 271, 1565-1584 (2010) · Zbl 1206.37045 · doi:10.1090/S0025-5718-10-02325-2
[27] [galepu] M. Gameiro, J.-P. Lessard, and A. Pugliese, Computation of smooth manifolds of solutions of PDEs via rigorous multi-parameter continuation. To appear in Foundations of Computational Mathematics, 2015. · Zbl 1347.65102
[28] Gameiro, Marcio; Lessard, Jean-Philippe, Rigorous computation of smooth branches of equilibria for the three dimensional Cahn-Hilliard equation, Numer. Math., 117, 4, 753-778 (2011) · Zbl 1216.65145 · doi:10.1007/s00211-010-0350-3
[29] Eckmann, J.-P.; Koch, H.; Wittwer, P., A computer-assisted proof of universality for area-preserving maps, Mem. Amer. Math. Soc., 47, 289, vi+122 pp. (1984) · Zbl 0528.58033 · doi:10.1090/memo/0289
[30] Arveson, William, A Short Course on Spectral Theory, Graduate Texts in Mathematics 209, x+135 pp. (2002), Springer-Verlag, New York · Zbl 0997.47001 · doi:10.1007/b97227
[31] van den Berg, Jan Bouwe; Desch{\^e}nes, Andr{\'e}a; Lessard, Jean-Philippe; Mireles James, Jason D., Stationary coexistence of hexagons and rolls via rigorous computations, SIAM J. Appl. Dyn. Syst., 14, 2, 942-979 (2015) · Zbl 1371.37036 · doi:10.1137/140984506
[32] [dlLFGL] M. Gameiro R. de la Llave, J.-L. Figueras and J.-P. Lessard, Theoretical results on the numerical computation and a-posteriori verification of invariant objects of evolution equations, in preparation, 2014.
[33] Knuth, Donald E., The Art of Computer Programming, \rm Vol. 2, Addison-Wesley Series in Computer Science and Information Processing, xiii+688 pp. (1981), Addison-Wesley Publishing Co., Reading, Mass. · Zbl 0895.65001
[34] Jorba, {\`A}ngel; Zou, Maorong, A software package for the numerical integration of ODEs by means of high-order Taylor methods, Experiment. Math., 14, 1, 99-117 (2005) · Zbl 1108.65072
[35] Mischaikow, Konstantin; Mrozek, Marian, Chaos in the Lorenz equations: a computer-assisted proof, Bull. Amer. Math. Soc. (N.S.), 32, 1, 66-72 (1995) · Zbl 0820.58042 · doi:10.1090/S0273-0979-1995-00558-6
[36] Arai, Zin; Mischaikow, Konstantin, Rigorous computations of homoclinic tangencies, SIAM J. Appl. Dyn. Syst., 5, 2, 280-292 (electronic) (2006) · Zbl 1210.37008 · doi:10.1137/050626429
[37] [swift-hohenberg] J. B. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A, 15(1) (1977).
[38] [Ru99a] S. M. Rump, INTLAB - INTerval LABoratory, in Tibor Csendes, editor, Developments in Reliable Computing, Kluwer Academic Publishers, Dordrecht, 1999, pp. 77-104. \newblock http://www.ti3.tu-harburg.de/rump/. \endbiblist · Zbl 0949.65046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.