zbMATH — the first resource for mathematics

Metastability of reversible random walks in potential fields. (English) Zbl 1327.82039
Summary: Let \(\Xi \) be an open and bounded subset of \({\mathbb {R}}^d \), and let \(F:\Xi \to {\mathbb {R}} \) be a twice continuously differentiable function. Denote by \(\Xi_N \) the discretization of \(\Xi \), \(\Xi_N = \Xi \cap (N^{-1} {\mathbb {Z}}^d) \), and denote by \(X_N(t) \) the continuous-time, nearest-neighbor, random walk on \(\Xi_N \) which jumps from \({\mathbf{x}} \) to \({\mathbf{y}}\) at rate \( e^{-(1/2) N [F({\mathbf{y}}) - F({\mathbf{x}})]} \). We examine in this article the metastable behavior of \(X_N(t) \) among the wells of the potential \(F \).

82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
Full Text: DOI arXiv
[1] Beltrán, J; Landim, C, Tunneling and metastability of continuous time Markov chains, J. Stat. Phys., 140, 1065-1114, (2010) · Zbl 1223.60061
[2] Beltrán, J; Landim, C, Tunneling and metastability of continuous time Markov chains II, J. Stat. Phys., 149, 598-618, (2012) · Zbl 1260.82063
[3] Beltrán, J; Landim, C, A martingale approach to metastability, Probab. Theory Relat. Fields, 161, 267-307, (2015) · Zbl 1338.60194
[4] Landim, C, A topology for limits of Markov chains, Stoch. Process. Appl., 125, 1058-1088, (2015) · Zbl 1322.60153
[5] Kramers, HA, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica, 7, 284-304, (1940) · Zbl 0061.46405
[6] Freidlin, M.I., Wentzell, A.D.: Random perturbations of dynamical systems, 2nd edn. Translated from the 1979 Russian original by Joseph Szücs. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260. Springer, New York (1998) · Zbl 0922.60006
[7] Galves, A; Olivieri, E; Vares, ME, Metastability for a class of dynamical systems subject to small random perturbations, Ann. Probab., 15, 1288-1305, (1987) · Zbl 0709.60058
[8] Bovier, A; Eckhoff, M; Gayrard, V; Klein, M, Metastability in stochastic dynamics of disordered Mean field models, Probab. Theory Relat. Fields, 119, 99-161, (2001) · Zbl 1012.82015
[9] Bovier, A; Eckhoff, M; Gayrard, V; Klein, M, Metastability and low-lying spectra in reversible Markov chains, Commun. Math. Phys., 228, 219-255, (2002) · Zbl 1010.60088
[10] Bovier, A; Eckhoff, M; Gayrard, V; Klein, M, Metastability in reversible diffusion processes. I. sharp asymptotics for capacities and exit times, J. Eur. Math. Soc., 6, 399-424, (2004) · Zbl 1076.82045
[11] Bovier, A; Gayrard, V; Klein, M, Metastability in reversible diffusion processes. II. precise asymptotics for small eigenvalues, J. Eur. Math. Soc., 7, 69-99, (2005) · Zbl 1105.82025
[12] Cameron, M; Vanden-Eijnden, E, Flows in complex networks: theory, algorithms, and application to lennardjones cluster rearrangement, J. Stat. Phys., 156, 427-454, (2014) · Zbl 1301.82031
[13] Noé, F., Wu, H., Prinz, J.H., Plattner, N.: Projected and hidden Markov models for calculating kinetics and metastable states of complex molecules (2013). arxiv:1309.3220v1
[14] Cassandro, M; Galves, A; Olivieri, E; Vares, ME, Metastable behavior of stochastic dynamics: a pathwise approach, J. Stat. Phys., 35, 603-634, (1984) · Zbl 0591.60080
[15] Weinan, E; Vanden-Eijnden, E, Towards a theory of transition paths, J. Stat. Phys., 123, 503-523, (2006) · Zbl 1101.82016
[16] Metzner, P; Schütte, Ch; Vanden-Eijnden, E, Transition path theory for Markov jump processes, SIAM Multiscale Model. Simul., 7, 1192-1219, (2009) · Zbl 1185.60086
[17] Avena, L., Gaudillière, A.: On some random forests with determinantal roots (2013). arXiv:1310.1723v3 · Zbl 1397.05161
[18] Bianchi, A; Bovier, A; Ioffe, D, Sharp asymptotics for metastability in the random field Curie-Weiss model, Electron. J. Probab., 14, 1541-1603, (2009) · Zbl 1186.82069
[19] Bianchi, A; Bovier, A; Ioffe, D, Pointwise estimates and exponential laws in metastable systems via coupling methods, Ann. Probab., 40, 339-371, (2012) · Zbl 1237.82039
[20] Gaudillière, A.: Condenser physics applied to Markov chains: a brief introduction to potential theory (2009). arXiv:0901.3053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.