×

Spectrally accurate method for analysis of stationary flows of second-order fluids in rough micro-channels. (English) Zbl 1322.76046

Summary: A spectral method for the analysis of stationary flows of second-order fluids in rough micro-channels is developed. The algorithm employs a fixed computational domain with the boundaries of the flow domain being located inside the computational domain. The physical boundary conditions are enforced using the immersed boundary conditions concept. The algorithm relies on the Fourier expansions in the flow direction and the Chebyshev expansions in the transverse direction. Various tests confirm spectral accuracy of the algorithm.

MSC:

76M22 Spectral methods applied to problems in fluid mechanics
76A05 Non-Newtonian fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rivlin, Stress deformation relations for isotropic materials, Journal of Rational Mechanics and Analysis 3 pp 323– (1955) · Zbl 0064.42004
[2] Huilgol, Fluid Mechanics of Viscoelasticity pp 151– (1997)
[3] Bird, Dynamics of Polymeric Liquids 2 pp 204– (1987)
[4] Walters, Relation between Coleman-Noll, Rivlin-Ericksen, Green-Rivlin and Oldroyd fluids, Zeitschrift für Angewandte Mathematik und Physik ZAMP 21 (4) pp 592– (1970) · Zbl 0202.25701 · doi:10.1007/BF01587688
[5] Walters, The distinctive CFD challenges of computational rheology, International Journal of Numerical Methods in Fluids 43 pp 577– (2003) · Zbl 1032.76606 · doi:10.1002/fld.522
[6] Tanner, Engineering Rheology (2000)
[7] Owens, Computational Rheology (2004)
[8] Floryan, Stability of wall bounded shear layers with simulated distributed surface roughness, Journal of Fluid Mechanics 335 pp 29– (1997) · Zbl 0890.76019 · doi:10.1017/S0022112096004429
[9] Nikuradse J Laws of flow in rough pipes 1950 1292
[10] Lin JC Walsh MJ Watson RD Turbulent drag characteristics of small amplitude rigid surface waves
[11] McLean, Computations of turbulent flow over a moving wavy boundary, Physics of Fluids 26 (8) pp 2065– (1983) · Zbl 0523.76046 · doi:10.1063/1.864410
[12] Caponi, Calculations of laminar viscous flow over a moving wavy surface, Journal of Fluid Mechanics 124 pp 347– (1982) · Zbl 0521.76030 · doi:10.1017/S0022112082002535
[13] Deiber, Modeling the flow of viscoelastic fluids through porous media, American Institute of Chemical Engineers Journal 27 (6) pp 912– (1981) · doi:10.1002/aic.690270606
[14] Sobey, On the flow through furrowed channels. Part 1. Calculated flow patterns, Journal of Fluid Mechanics 96 (1) pp 1– (1980) · Zbl 0421.76021 · doi:10.1017/S002211208000198X
[15] James, Flow of test fluid M1 in corrugated tubes, Journal of Non-Newtonian Fluid Mechanics 35 (2-3) pp 405– (1990) · doi:10.1016/0377-0257(90)85061-3
[16] Floryan, Three-dimensional instabilities of laminar flow in a rough channel and the concept of hydraulically smooth wall, European Journal of Mechanics B/Fluids 26 (3) pp 305– (2007) · Zbl 1150.76021 · doi:10.1016/j.euromechflu.2006.07.002
[17] Pilitsis, Viscoelastic flow in an undulating tube. Part II. Effect of high elasticity, large amplitude of undulation and inertia, Journal of Non-Newtonian Fluid Mechanics 39 (3) pp 375– (1991) · Zbl 0728.76006 · doi:10.1016/0377-0257(91)80023-D
[18] Pilitsis, Calculations of steady-state viscoelastic flow in an undulating tube, Journal of Non-Newtonian Fluid Mechanics 31 (3) pp 231– (1989) · Zbl 0667.76019 · doi:10.1016/0377-0257(89)85001-3
[19] Zheng, Numerical analysis of viscoelastic flow through a sinusoidally corrugated tube using a boundary element method, Journal of Rheology 34 (1) pp 79– (1990) · doi:10.1122/1.550115
[20] Brown, Galerkin finite element analysis of complex viscoelastic flows, Computer Methods in Applied Mechanics and Engineering 58 (2) pp 201– (1986) · Zbl 0607.76006 · doi:10.1016/0045-7825(86)90096-4
[21] Beris, Spectral/finite-element calculations of the flow of a Maxwell fluid between eccentric rotating cylinders, Journal of Non-Newtonian Fluid Mechanics 22 (2) pp 129– (1987) · Zbl 0609.76010 · doi:10.1016/0377-0257(87)80033-2
[22] Marchal, A new mixed finite element for calculating viscoelastic flow, Journal of Non-Newtonian Fluid Mechanics 26 (1) pp 77– (1987) · Zbl 0637.76009 · doi:10.1016/0377-0257(87)85048-6
[23] Pilitsis, Pseudospectral calculations of viscoelastic flow in a periodically constricted tube, Computer Methods in Applied Mechanics and Engineering 98 (3) pp 307– (1992) · Zbl 0825.76612 · doi:10.1016/0045-7825(92)90001-Z
[24] Karniadakis, Spectral/HP Element Methods for Computational Fluid Dynamics (2005) · Zbl 1116.76002 · doi:10.1093/acprof:oso/9780198528692.001.0001
[25] Thompson, Numerical Grid generation: Foundations and Applications (1985) · Zbl 0598.65086
[26] Rokicki, Higher-order unstructured domain decomposition method for Navier-Stokes equations, Computers and Fluids 28 (1) pp 87– (1999) · Zbl 0965.76068 · doi:10.1016/S0045-7930(98)00007-3
[27] Szumbarski, A direct spectral method for determination of flows over corrugated boundaries, Journal of Computational Physics 153 (2) pp 378– (1999) · Zbl 0951.76068 · doi:10.1006/jcph.1999.6282
[28] Peskin, The fluid dynamics of heart valves: experimental, theoretical and computational methods, Annual Review of Fluid Mechanics 14 pp 235– (1982) · Zbl 0488.76129 · doi:10.1146/annurev.fl.14.010182.001315
[29] Mittal, Immersed boundary methods, Annual Review of Fluid Mechanics 37 pp 239– (2005) · Zbl 1117.76049 · doi:10.1146/annurev.fluid.37.061903.175743
[30] Peskin, The immersed boundary method, Acta Numerica 11 pp 479– (2002) · Zbl 1123.74309 · doi:10.1017/S0962492902000077
[31] Floryan, Numerical analysis of viscous flows with free surfaces, Applied Mechanics Reviews 42 pp 323– (1989) · doi:10.1115/1.3152416
[32] Husain, Immersed boundary conditions method for unsteady flow problems described by Laplace operator, International Journal for Numerical Methods in Fluids 56 (9) pp 1765– (2008) · Zbl 1133.76039 · doi:10.1002/fld.1579
[33] Husain, Implicit spectrally-accurate method for moving boundary problems using immersed boundary conditions concept, Journal of Computational Physics 227 (9) pp 4459– (2008) · Zbl 1142.65081 · doi:10.1016/j.jcp.2008.01.002
[34] Husain, Gridless spectral algorithm for Stokes flow with moving boundaries, Computer Methods in Applied Mechanics and Engineering 198 pp 245– (2008) · Zbl 1194.76190 · doi:10.1016/j.cma.2008.07.007
[35] Canuto, Spectral Methods in Fluid Dynamics (1996)
[36] Mason, Chebyshev Polynomials (2002) · doi:10.1201/9781420036114
[37] Husain SZ Floryan JM An efficient linear solver for problems arising from the spectral implementation of the immersed boundary conditions method 2008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.