zbMATH — the first resource for mathematics

Existence theory for the kinetic-fluid coupling when small droplets are treated as part of the fluid. (English) Zbl 1293.35020
The authors consider in this paper a spray constituted of an incompressible viscous gas and small droplets which can break up. This spray is modeled by the coupling of the incompressible Navier-Stokes equation and the Vlasov-Boltzmann equation, together with a fragmentation kernel. First, the authors show at the formal level that if the droplets are very small after the breakup, then the solutions of this system converge towards the solution of a simplified system in which the small droplets produced by the breakup are treated as part of the fluid. Then, existence of global weak solutions for this last system is shown to hold, thanks to the use of the DiPerna-Lions theory for singular transport equations.

35B25 Singular perturbations in context of PDEs
76T10 Liquid-gas two-phase flows, bubbly flows
35Q30 Navier-Stokes equations
Full Text: DOI arXiv
[1] DOI: 10.1002/(SICI)1099-1476(199704)20:6<495::AID-MMA858>3.0.CO;2-O · Zbl 0871.35075 · doi:10.1002/(SICI)1099-1476(199704)20:6<495::AID-MMA858>3.0.CO;2-O
[2] Antontsev S. N., Studies in Mathematics and Its Applications 22, in: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids (1989)
[3] DOI: 10.1142/S0219891606000707 · Zbl 1093.35046 · doi:10.1142/S0219891606000707
[4] Boudin L., Differential Integral Equations 22 pp 1247–
[5] Carrillo J. A., Kinet. Relat. Models 1 pp 227–
[6] Danchin R., Sémin. Équ. Dériv Partielles 2003 pp 1–
[7] Desjardins B., Differential Integral Equations 10 pp 587–
[8] DOI: 10.1016/j.cma.2009.08.008 · Zbl 1227.76067 · doi:10.1016/j.cma.2009.08.008
[9] DOI: 10.1007/BF01393835 · Zbl 0696.34049 · doi:10.1007/BF01393835
[10] Gilbarg D., Elliptic Partial Differential Equations of Second Order (2001) · Zbl 1042.35002
[11] DOI: 10.1007/BF03167396 · Zbl 1306.76052 · doi:10.1007/BF03167396
[12] Lions P. L., Oxford Lecture Series in Mathematics and Its Applications, in: Mathematical Topics in Fluid Mechanics: Incompressible Models (1996)
[13] DOI: 10.1142/S0218202510004192 · Zbl 1225.35175 · doi:10.1142/S0218202510004192
[14] DOI: 10.1142/S0218202507002194 · Zbl 1136.76042 · doi:10.1142/S0218202507002194
[15] DOI: 10.1007/s00220-008-0523-4 · Zbl 1155.35415 · doi:10.1007/s00220-008-0523-4
[16] Simon J., C. R. Math. Acad. Sci. Paris Sér. I 309 pp 447–
[17] Stein E. M., Introduction to Fourier Analysis on Euclidian Spaces (1971)
[18] Williams F. A., Combustion Theory (1985)
[19] DOI: 10.1016/j.matpur.2013.01.001 · Zbl 1284.35119 · doi:10.1016/j.matpur.2013.01.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.