Desvillettes, L.; Lepoutre, T.; Moussa, A.; Trescases, A. On the entropic structure of reaction-cross diffusion systems. (English) Zbl 1331.35179 Commun. Partial Differ. Equations 40, No. 9, 1705-1747 (2015). This article is concerned with the existence analysis of reaction-(cross-)diffusion systems of the form \[ \partial_t U-\Delta[A(U)]=R(U) \] for a vector-valued unknown \(U=(u_1,\ldots,u_I)\) such that its components be nonnegative-valued and satisfy homogeneous Neumann boundary conditions on a bounded domain \(\Omega\subset\mathbb{R}^d\).In addition to certain continuity properties and bounds of the parameter functions \(A\) and \(R\), the central assumption on \(A\) is that it is a homeomorphism from the nonnegative cone \([0,\infty)^I\) to itself. The cornerstone of this article is a novel semi-discretization scheme reading as \[ \frac{U^k-U^{k-1}}{\tau}-\Delta[A(U^k)]=R(U^k)\quad\text{in }\Omega,\qquad \partial_n A(U^k)=0\quad\text{on }\partial\Omega. \] The well-posedness of the scheme is proved by a fixed-point argument. The key feature of this discretization is the preservation of an entropic structure of the PDE system at hand (existing in the considered examples) which itself can be of use for finding the sufficient a priori estimates to obtain a weak solution after passing to the continuous-time limit \(\tau\to 0\).These ideas are, amongst others, applied to cross-diffusion systems already considered in [L. Desvillettes et al., SIAM J. Math. Anal. 46, No. 1, 820–853 (2014; Zbl 1293.35142)], now allowing for a wider parameter range. Reviewer: Jonathan Zinsl (München) Cited in 1 ReviewCited in 19 Documents MSC: 35K57 Reaction-diffusion equations 35K51 Initial-boundary value problems for second-order parabolic systems 35K55 Nonlinear parabolic equations 35Q92 PDEs in connection with biology, chemistry and other natural sciences 92D25 Population dynamics (general) Keywords:cross diffusion; entropy method; global-in-time existence; population dynamics; SKT model; strongly coupled parabolic systems PDF BibTeX XML Cite \textit{L. Desvillettes} et al., Commun. Partial Differ. Equations 40, No. 9, 1705--1747 (2015; Zbl 1331.35179) Full Text: DOI References: [1] DOI: 10.1007/BF02571246 · Zbl 0719.35044 · doi:10.1007/BF02571246 [2] DOI: 10.1016/j.matpur.2009.05.003 · Zbl 1179.35156 · doi:10.1016/j.matpur.2009.05.003 [3] DOI: 10.1006/jmaa.2000.6895 · Zbl 0963.35077 · doi:10.1006/jmaa.2000.6895 [4] DOI: 10.1016/j.jde.2005.08.002 · Zbl 1096.35060 · doi:10.1016/j.jde.2005.08.002 [5] DOI: 10.1137/130908701 · Zbl 1293.35142 · doi:10.1137/130908701 [6] DOI: 10.1016/j.jmaa.2015.03.078 · Zbl 1319.35077 · doi:10.1016/j.jmaa.2015.03.078 [7] DOI: 10.1016/j.na.2011.12.004 · Zbl 1245.46017 · doi:10.1016/j.na.2011.12.004 [8] DOI: 10.1007/978-3-642-61798-0 · Zbl 0361.35003 · doi:10.1007/978-3-642-61798-0 [9] DOI: 10.2307/2316266 · Zbl 0263.57015 · doi:10.2307/2316266 [10] Grisvard P., Elliptic Problems in Nonsmooth Domains (1985) · Zbl 0695.35060 [11] DOI: 10.1088/0951-7715/28/6/1963 · Zbl 1326.35175 · doi:10.1088/0951-7715/28/6/1963 [12] DOI: 10.1016/S0076-5392(08)62804-0 · doi:10.1016/S0076-5392(08)62804-0 [13] DOI: 10.1137/S0036141095295437 · Zbl 0877.35061 · doi:10.1137/S0036141095295437 [14] DOI: 10.1016/0022-5193(79)90258-3 · doi:10.1016/0022-5193(79)90258-3 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.