zbMATH — the first resource for mathematics

Global existence of weak solutions to the incompressible Vlasov-Navier-Stokes system coupled to convection-diffusion equations. (English) Zbl 07263759
35Q35 PDEs in connection with fluid mechanics
35Q83 Vlasov equations
35D30 Weak solutions to PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76R50 Diffusion
76T10 Liquid-gas two-phase flows, bubbly flows
76T30 Three or more component flows
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI
[1] Anoshchenko, O. and de Monvel-Berthier, A. Boutet, The existence of the global generalized solution of the system of equations describing suspension motion, Math. Methods Appl. Sci.20 (1997) 495-519. · Zbl 0871.35075
[2] Baranger, C., Boudin, L., Jabin, P.-E. and Mancini, S., A modeling of biospray for the upper airways, in CEMRACS 2004 — Mathematics and Applications to Biology and Medicine, , Vol. 14 (EDP Sciences, 2005), pp. 41-47. · Zbl 1075.92031
[3] Baranger, C. and Desvillettes, L., Coupling Euler and Vlasov equations in the context of sprays: The local-in-time, classical solutions, J. Hyperbolic Differ. Equ.3 (2006) 1-26. · Zbl 1093.35046
[4] F. F. Bonsall, Lectures on Some Fixed Point Theorems of Functional Analysis, Notes by K. B. Vedak (Tata Institute of Fundamental Research, 1962).
[5] Boudin, L., Desvillettes, L., Grandmont, C. and Moussa, A., Global existence of solutions for the coupled Vlasov and Navier-Stokes equations, Differential Integral Equ.22 (2009) 1247-1271. · Zbl 1240.35403
[6] Boudin, L., Grandmont, C., Grec, B., Martin, S., Mecherbet, A. and Noël, F., Fluid-kinetic modelling for respiratory aerosols with variable size and temperature, ESAIM Proc. Surveys67 (2020) 100-119. · Zbl 1446.76168
[7] Boudin, L., Grandmont, C., Lorz, A. and Moussa, A., Modelling and numerics for respiratory aerosols, Commun. Comput. Phys.18 (2015) 723-756. · Zbl 1373.76078
[8] Boudin, L., Grandmont, C. and Moussa, A., Global existence of solutions to the incompressible Navier-Stokes-Vlasov equations in a time-dependent domain, J. Differential Equations262 (2017) 1317-1340. · Zbl 1371.35214
[9] Chae, M., Kang, K. and Lee, J., Global classical solutions for a compressible fluid-particle interaction model, J. Hyperbolic Differ. Equ.10 (2013) 537-562. · Zbl 1284.35305
[10] Y.-P. Choi and J. Jung, Asymptotic analysis for Vlasov-Fokker-Planck/compressible Navier-Stokes equations with a density-dependent viscosity, preprints (2019), arXiv:1901.01221.
[11] Desvillettes, L., Some aspects of the modeling at different scales of multiphase flows, Comput. Methods Appl. Mech. Engrg.199 (2010) 1265-1267. · Zbl 1227.76067
[12] DiPerna, R. J. and Lions, P.-L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math.98 (1989) 511-547. · Zbl 0696.34049
[13] Dufour, G. and Villedieu, P., A second-order multi-fluid model for evaporating sprays, M2AN Math. Model. Numer. Anal.39 (2005) 931-963. · Zbl 1075.35048
[14] Evans, L. C., Partial Differential Equations, , 2nd edn. Vol. 19 (Amer. Math. Soc., 2010). · Zbl 1194.35001
[15] Gemci, T., Corcoran, T. and Chigier, N., A numerical and experimental study of spray dynamics in a simple throat model, Aerosol Sci. Technol.36 (2002) 18-38.
[16] Glass, O., Han-Kwan, D. and Moussa, A., The Vlasov-Navier-Stokes system in a 2D pipe: Existence and stability of regular equilibria, Arch. Ration. Mech. Anal.230 (2018) 593-639. · Zbl 1398.35242
[17] Hamdache, K., Global existence and large time behavior of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math.15 (1998) 51-74. · Zbl 1306.76052
[18] Han-Kwan, D., Miot, É., Moussa, A. and Moyano, I., Uniqueness of the solution to the 2D Vlasov-Navier-Stokes system, Rev. Mat. Iberoam.36 (2020) 37-60. · Zbl 1437.35536
[19] D. Han-Kwan, A. Moussa and I. Moyano, Large time behavior of the Vlasov-Navier-Stokes system on the torus, To appear in Arch. Ration. Mech. Anal. · Zbl 1436.35043
[20] Li, F., Mu, Y. and Wang, D., Strong solutions to the compressible Navier-Stokes-Vlasov-Fokker-Planck equations: Global existence near the equilibrium and large time behavior, SIAM J. Math. Anal.49(2) (2017) 984-1026. · Zbl 1367.35110
[21] Longest, P. W. and Hindle, M., Numerical model to characterize the size increase of combination drug and hygroscopic excipient nanoparticle aerosols, Aerosol Sci. Tech.45 (2011) 884-899.
[22] Mathiaud, J., Local smooth solutions of a thin spray model with collisions, Math. Models Methods Appl. Sci.20 (2010) 191-221. · Zbl 1225.35175
[23] Mellet, A. and Vasseur, A., Global weak solutions for a Vlasov-Fokker-Planck/ Navier-Stokes system of equations, Math. Models Methods Appl. Sci.17 (2007) 1039-1063. · Zbl 1136.76042
[24] Mellet, A. and Vasseur, A., Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations, Comm. Math. Phys.281 (2008) 573-596. · Zbl 1155.35415
[25] Moussa, A., Some variants of the classical Aubin-Lions Lemma, J. Evol. Equ.16 (2016) 65-93. · Zbl 1376.46015
[26] Williams, F. A., Combustion Theory, 2nd edn. (Benjamin Cummings, 1985).
[27] Yu, C., Global weak solutions to the incompressible Navier-Stokes-Vlasov equations, J. Math. Pures Appl. (9), 100 (2013) 275-293. · Zbl 1284.35119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.