×

Isogeometric analysis of laminated composite plates based on a four-variable refined plate theory. (English) Zbl 1297.74014

Summary: A simple and effective formulation based on isogeometric approach (IGA) and a four variable refined plate theory (RPT) is proposed to investigate the behavior of laminated composite plates. RPT model satisfies the traction-free boundary conditions at plate surfaces and describes the non-linear distribution of shear stresses without requiring shear correction factor (SCF). IGA utilizes basis functions, namely B-splines or non-uniform rational B-splines (NURBS), which reveals easily the smoothness of any arbitrary order. It hence handles easily the \(C^1\) requirement of the RPT model. Approximating the displacement field with four degrees of freedom per each node, the present method retains the computational efficiency while ensuring the reasonable accuracy in solution.

MSC:

74A50 Structured surfaces and interfaces, coexistent phases
74K20 Plates
74E30 Composite and mixture properties
65D17 Computer-aided design (modeling of curves and surfaces)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Pagano, N. J., Exact solutions for rectangular bidirectional composites and sandwich plates, J Compos Mater, 4, 20-34 (1970)
[2] Noor, A. K., Free vibration of multilayered composite plates, AIAA J, 11, 1038-1039 (1973)
[3] Noor, A. K., Stability of multilayered composite plates, Fiber Sci Technol, 8, 81-89 (1975)
[4] Reddy, J. N., Mechanics of laminated composite plates-theory and analysis (1997), CRC Press: CRC Press NewYork · Zbl 0899.73002
[5] Reissner, E., The effect of transverse shear deformation on the bending of elastic plates, J Appl Mech Trans ASME, 12, 69-77 (1945)
[6] Mindlin, R. D., Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates, J Appl Mech Trans ASME, 18, 31-38 (1951) · Zbl 0044.40101
[7] Ferreira, A. J.M.; Castro, L. M.S.; Bertoluzza, S., A high order collocation method for the static and vibration analysis of composite plates using a first-order theory, Compos Struct, 34, 627-636 (2003)
[8] Reddy, J. N., A simple higher-order theory for laminated composite plates, J Appl Mech, Trans ASME, 51, 745-752 (1984) · Zbl 0549.73062
[9] Ferreira, A. J.M.; Batra, R. C.; Roque, C. M.C.; Qian, L. F.; Martins, P. A.L. S., Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method, Compos Struct, 69, 449-457 (2005)
[10] Reddy, J. N., A simple higher-order theory for laminated composite plates, J Appl Mech, 51, 745-752 (1984) · Zbl 0549.73062
[11] Soldatos, K. P., A transverse shear deformation theory for homogenous monoclinic plates, Acta Mech, 94, 195-220 (1992) · Zbl 0850.73130
[12] Touratier, M., An efficient standard plate theory, Int J Eng Sci, 29, 901-916 (1991) · Zbl 0825.73299
[13] Karama, M.; Afaq, K. S.; Mistou, S., Mechanical behavior of laminated composite beam by new multi-layered laminated composite structures model with transverse shear stress continuity, Int J Solids Struct, 40, 1525-1546 (2003) · Zbl 1087.74579
[14] Arya, H.; Shimpi, R. P.; Naik, N. K., A zigzag model for laminated composite beams, Compos Struct, 56, 21-24 (2002)
[15] Aydogdu, M., A new shear deformation theory for laminated composite plates, Compos Struct, 89, 94-101 (2009)
[16] Senthilnathan, N. R.; Lim, S. P.; Lee, K. H.; Chow, S. T., Buckling of shear-deformable plates, AIAA J, 25, 1268-1271 (1987)
[17] Shimpi, R. P., Refined plate theory and its variants, AIAA J, 40, 137-146 (2002)
[18] Shimpi, R. P.; Patel, H. G., A two variable refined plate theory for orthotropic plate analysis, Int J Solids Struct, 43, 6783-6799 (2006) · Zbl 1120.74605
[19] Thai, H. T.; Choi, D. H., A refined plate theory for functionally graded plates resting on elastic foundation, Compos Sci Technol, 71, 1850-1858 (2011)
[20] Kim, S. E.; Thai, H. T.; Lee, J., A two variable refined plate theory for laminated composite plates, Compos Struct, 89, 197-205 (2009)
[22] Tran, V. L.; Ferreira, A. J.M.; Nguyen-Xuan, H., Isogeometric analysis of functionally graded plates using higher-order shear deformation theory, Compos Part B: Eng, 51, 368-383 (2013)
[23] Thai, H. C.; Tran, V. L.; Tran, T. D.; Nguyen-Thoi, T.; Nguyen-Xuan, H., Analysis of laminated composite plates using higher-order shear deformation plate theory and node-based smoothed discrete shear gap method, Applied Mathematical Modelling, 36, 5657-5677 (2012) · Zbl 1254.74079
[24] Tran, V. L.; Nguyen-Thoi, T.; Thai, H. C.; Nguyen-Xuan, H., An edge-based smoothed discrete shear gap method (ES-DSG) using the \(C^0\)-type higher-order shear deformation theory for analysis of laminated composite plates, Mech Adv Mater Struct (2012), http://dx.doi.org/10.1080/15376494.2012.736055
[25] Sankara, C. A.; Igengar, N. G.R., A \(C^0\) element for free vibration analysis of laminated composite plates, J Sound Vib, 191, 721-738 (1996)
[26] Kant, T.; Swaminathan, K., Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory, Compos Struct, 56, 329-344 (2002)
[27] Piegl, L. E.S.; Tiller, Wayne, The NURBS book (1996), Springer: Springer Germany · Zbl 0828.68118
[28] Shaw, Amit; Roy, D., A NURBS-based error reproducing kernel method with applications in solid mechanics, Comput Mech, 40, 127-148 (2007) · Zbl 1187.74260
[29] Simpson, R. N.; Bordas, S. P.A.; Trevelyan, J.; Rabczuk, T., A two-dimensional isogeometric boundary element method for elasto static analysis, Comput Methods Appl Mech Eng, 209-212, 87-100 (2012) · Zbl 1243.74193
[30] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput Methods Appl Mech Eng, 194, 4135-4195 (2005) · Zbl 1151.74419
[31] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric analysis, towards integration of CAD and FEA (2009), Wiley: Wiley Singapore · Zbl 1378.65009
[32] Elguedj, T.; Bazilevs, Y.; Calo, V.; Hughes, T. J.R., B and F projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput Methods Appl Mech Eng, 197, 2732-2762 (2008) · Zbl 1194.74518
[33] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of structural vibrations, Comput Methods Appl Mech Eng, 195, 5257-5296 (2006) · Zbl 1119.74024
[34] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., Isogeometric shell analysis: the Reissner-Mindlin shell, Comput Methods Appl Mech Eng, 199, 276-289 (2006) · Zbl 1227.74107
[35] Kiendl, J.; Bletzinger, K. U.; Linhard J, J.; Wchner, R., Isogeometric shell analysis with Kirchhoff-Love elements, Comput Methods Appl Mech Eng, 198, 3902-3914 (2006) · Zbl 1231.74422
[36] Wall, W. A.; Frenzel, M. A.; Cyron, C., Isogeometric structural shape optimization, Comput Methods Appl Mech Eng, 197, 2976-2988 (2008) · Zbl 1194.74263
[37] Thai, H. C.; Nguyen-Xuan, H.; Nguyen-Thanh, N.; Le, T. H.; Nguyen-Thoi, T.; Rabczuk, T., Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach, Int J Numer Methods Eng, 91, 571-603 (2012) · Zbl 1253.74007
[38] Tran, V. L.; Thai, H. C.; Nguyen-Xuan, H., An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates, Finite Elem Anal Des, 73, 65-76 (2013)
[39] Nguyen-Thanh, N.; Kiendl, J.; Nguyen-Xuan, H.; Wüchner, R.; Bletzinger, K. U.; Bazilevs, Y., Rotation free isogeometric thin shell analysis using PHT-splines, Comput Methods Appl Mech Eng, 200, 3410-3424 (2011) · Zbl 1230.74230
[40] Xiao, J. R.; Gilhooley, D. F.; Batra, R. C.; Gillespie, J. W.; McCarthy, M. A., Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory (HOSNDPT) and a meshless method, Compos Part B: Eng, 39, 414-427 (2008)
[41] Vel, S. S.; Batra, R. C., Analytical solutions for rectangular thick laminated plates subjected to arbitrary boundary conditions, AIAA J, 37, 1464-1473 (1999)
[42] Khdeir, A. A.; Reddy, J. N., Analytical solutions of refined plate theories of cross-ply composite laminates, J Press Vessel Technol, 113, 570-578 (1991)
[43] Kant, T.; Swaminathan, K., Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory, Compos Struct, 53, 73-85 (2001)
[44] Reddy, J. N.; Khdeir, A., Buckling and vibration of laminated composite plates using various plate theories, AIAA J, 27, 1808-1817 (1989) · Zbl 0697.73039
[45] Chien, H.; Thai, A. J.M.; Ferreira, S. P.A.; Bordas, T.; Rabczuk, H., Nguyen-Xuan, isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory, Eur J Mech-A/Solids, 43, 89-108 (2014) · Zbl 1406.74453
[46] Liu, L.; Chua, L. P.; Ghista, D. N., Mesh-free radial basis function method for static, free vibration and buckling analysis of shear deformable composite laminates, Compos Struct, 78, 58-69 (2007)
[47] Khdeir, A. A.; Librescu, L., Analysis of symmetric cross-ply elastic plates using a higher-order theory: Part II: buckling and free vibration, Compos Struct, 9, 259-277 (1988)
[48] Ren, J. G., Bending, vibration and buckling of laminated plates, (Cheremisinoff, N. P., Hand book of ceramics and composites, vol. 1 (1990), Marcel Dekker: Marcel Dekker New York), 413-450
[49] Ferreira, A. J.M., Analysis of composite plates using a layerwise deformation theory and multiquadrics discretization, Mech Adv Mater Struct, 12, 2, 99-112 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.