×

A global approximation to the Green function for diffraction radiation of water waves. (English) Zbl 1408.76092

Summary: The Green function of the theory of diffraction radiation of time-harmonic (regular) waves by an offshore structure, or a ship at low speed, in deep water is considered. The Green function \(G\) and its gradient \(\nabla G\) are expressed in the usual manner as the sum of three components that correspond to the fundamental free-space singularity, a non-oscillatory local flow, and waves. Simple approximations that only involve elementary continuous functions (algebraic, exponential, logarithmic) of real arguments are given for the local flow components in \(G\) and \(\nabla G\). These approximations are global approximations valid within the entire flow region, rather than within complementary contiguous regions as can be found in the literature. The analysis of the errors associated with the approximations to the local flow components given in the study shows that the approximations are sufficiently accurate for practical purposes. These global approximations provide a particularly simple and highly efficient way of numerically evaluating the Green function and its gradient for diffraction radiation of time-harmonic waves in deep water.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35A08 Fundamental solutions to PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Havelock, T. H., The damping of the heaving and pitching motion of a ship, Lond. Edinb. Dublin Philos. Mag. J. Sci., 33, 224, 666-673, (1942) · Zbl 0061.46006
[2] Havelock, T. H., Waves due to a floating sphere making periodic heaving oscillations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 231, 1184, 1-7, (1955) · Zbl 0068.39402
[3] Thorne, R. C., Multipole expansions in the theory of surface waves, Math. Proc. Camb. Phil. Soc., 49, 4, 707-716, (1953) · Zbl 0052.43106
[4] Haskind, M. D., On wave motion of a heavy fluid, Prikl. Mat. Mekh., 18, 15-26, (1954)
[5] Wehausen, J. V.; Laitone, E. V., Surface waves, (Handbuch der Physik, Vol. 9, (1960), Springer-Verlag Berlin), 446-778 · Zbl 1339.76009
[6] Kim, W. D., On the harmonic oscillations of a rigid body on a free surface, J. Fluid Mech., 21, 3, 427-451, (1965) · Zbl 0133.19602
[7] Noblesse, F., The Green function in the theory of radiation and diffraction of regular water waves by a body, J. Engrg. Math., 16, 2, 137-169, (1982) · Zbl 0492.76025
[8] D. Martin, Résolution numérique du problème linéarisé de la tenue à la mer, Association Technique Maritime et Aéronautique, 1980.
[9] Telste, J. G.; Noblesse, F., Numerical evaluation of the Green function of water-wave radiation and diffraction, J. Ship Res., 30, 2, 69-84, (1986)
[10] Newman, J. N., An expansion of the oscillatory source potential, Appl. Ocean Res., 6, 2, 116-117, (1984)
[11] Newman, J. N., Algorithms for the free-surface Green function, J. Engrg. Math., 19, 1, 57-67, (1985) · Zbl 0555.76022
[12] X.B. Chen, Free surface Green function and its approximation by polynomial series, Bureau Veritas’ Research Report No. 641 DTO/XC, Bureau Veritas, France, 1991.
[13] X.B. Chen, Evaluation de la fonction de Green du probleme de diffraction/radiation en profondeur d’eau finie-une nouvelle méthode rapide et précise, in: 4e J. Hydrodyn. Nantes, France, 1993, pp. 371-384.
[14] Wang, R. S., The numerical approach of three dimensional free-surface Green function and its derivatives, J. Hydrodyn. Ser. A, 7, 3, 277-286, (1992)
[15] Zhou, Q.; Zhang, G.; Zhu, L., The fast calculation of free-surface wave Green function and its derivatives, Chin. J. Comput. Phys., 16, 2, 113-120, (1999)
[16] M. Ba, B. Ponizy, F. Noblesse, Calculation of the Green function of water-wave diffraction and radiation, in: The Second International Offshore and Polar Engineering Conference, San Francisco, USA, 1992, pp. 60-63.
[17] Ponizy, B.; Noblesse, F.; Ba, M.; Guilbaud, M., Numerical evaluation of free-surface Green functions, J. Ship Res., 38, 3, 193-202, (1994)
[18] Peter, M. A.; Meylan, M. H., The eigenfunction expansion of the infinite depth free surface Green function in three dimensions, Wave Motion, 40, 1, 1-11, (2004) · Zbl 1163.74421
[19] Yao, X. L.; Sun, S. L.; Wang, S. P.; Yang, S. T., The research on the highly efficient calculation method of 3-D frequency-domain Green function, J. Mar. Sci. Appl., 8, 3, 196-203, (2009)
[20] D’elía, J.; Battaglia, L.; Storti, M., A semi-analytical computation of the Kelvin kernel for potential flows with a free surface, Comput. Appl. Math., 30, 2, 267-287, (2011) · Zbl 1232.33032
[21] Shen, Y.; Yu, D.; Duan, W.; Ling, H., Ordinary differential equation algorithms for a frequency-domain water wave green’s function, J. Engrg. Math., 100, 1, 53-66, (2016) · Zbl 1379.76009
[22] Wu, H.; Zhang, C.; Ma, C.; Huang, F.; Yang, C.; Noblesse, F., Errors due to a practical Green function for steady ship waves, Eur. J. Mech. B Fluids, 55, 162-169, (2016) · Zbl 1408.76102
[23] Noblesse, F.; Delhommeau, G.; Huang, F.; Yang, C., Practical mathematical representation of the flow due to a distribution of sources on a steadily advancing ship hull, J. Engrg. Math., 71, 4, 367-392, (2011) · Zbl 1254.76034
[24] H. Wu, C. Ma, Y. Zhu, Z. Yang, W. Li, F. Noblesse, Approximations of the Green function for diffraction radiation of water waves, in: The 26th International Ocean and Polar Engineering Conference, Rhodes, Greece, 2016, pp. 134-139.
[25] Noblesse, F., Integral identities of potential theory of radiation and diffraction of regular water waves by a body, J. Engrg. Math., 17, 1, 1-13, (1983) · Zbl 0504.76023
[26] Hitchcock, A. J.M., Polynomial approximations to Bessel functions of order zero and one and to related functions, Math. Comp., 11, 58, 86-88, (1957) · Zbl 0078.12607
[27] Abramowitz, M.; Stegun, I. A., Handbook of mathematical functions, (1965), Dover New York · Zbl 0515.33001
[28] Luke, Y. L., Mathematical functions and their approximations, (1975), Academic Press New York · Zbl 0351.33007
[29] Newman, J. N., Approximations for the Bessel and struve functions, Math. Comp., 43, 168, 551-556, (1984) · Zbl 0561.65012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.