×

Metrization theory and the Kadec property. (English) Zbl 1351.46002

Summary: The uniform structure of a descriptive normed space \((X,\| \cdot\|)\) always admits a description with an \((F)\)-norm \(\| \cdot\|_{1}\) such that weak and norm topologies coincide on \[ \{x\in X:\| x\|_{1}=\rho\} \] for every \(\rho> 0\).

MSC:

46A16 Not locally convex spaces (metrizable topological linear spaces, locally bounded spaces, quasi-Banach spaces, etc.)
46B03 Isomorphic theory (including renorming) of Banach spaces
46B20 Geometry and structure of normed linear spaces
46B26 Nonseparable Banach spaces
54E35 Metric spaces, metrizability
PDFBibTeX XMLCite
Full Text: DOI Euclid Link

References:

[1] S. Banach, Theory of Linear Opeations , Dover, Mineola, New York, 2009.
[2] M. R. Burke, W. Kubiś, and S. Todorčević, Kadec norms on spaces of continuous functions , Serdica Math. J. 32 (2006), no. 2-3, 227-258.
[3] R. Deville, G. Godefroy, and V. Zizler, Smoothness and Renormings in Banach Spaces , Pitman Monogr. Surveys Pure Appl. Math. 64 , Longman, Harlow, 1993. · Zbl 0782.46019
[4] A. Dow, H. Junnila, and J. Pelant, Weak covering properties of weak topologies , Proc. Lond. Math. Soc. (3) 75 (1997), no. 2, 349-368. · Zbl 0886.54014
[5] A. Dow, H. Junnila and J. Pelant, Coverings, networks and weak topologies , Mathematika 53 (2006), no. 2, 287-320. · Zbl 1138.46012
[6] R. Engelking, General Topology , Polish Scientific, Warsaw, 1977.
[7] M. Fabián and G. Godefroy, The dual of every Asplund space admits a projectional resolution of the identity , Studia Math. 91 (1988), no. 2, 141-151. · Zbl 0692.46012
[8] R. W. Hansell, Descriptive sets and the topology of nonseparable Banach spaces , Serdica Math. J. 27 (2001), no. 1, 1-66.
[9] R. G. Haydon, Trees in renorming theory , Proc. Lond. Math. Soc. (3) 78 (1999), no. 3, 541-584. · Zbl 1036.46003
[10] R. G. Haydon, J. E. Jayne, I. Namioka, and C. A. Rogers, Continuous functions on totally ordered spaces that are compact in their order topologies , J. Funct. Anal. 178 (2000), no. 1, 23-63. · Zbl 1003.46002
[11] H. Jarchow, Locally Convex Spaces , Math. Leitfden, B. G. Teubner, Stuttgart, 1981. · Zbl 0466.46001
[12] J. E. Jayne, I. Namioka, and C. A. Rogers, \(\sigma\)-fragmentable Banach spaces , Mathematika 39 (1992), no. 1, 161-188. · Zbl 0761.46008
[13] J. E. Jayne, I. Namioka, and C. A. Rogers, \(\sigma\)-fragmentable Banach spaces , Mathematika 39 (1992), no. 2, 197-215. · Zbl 0761.46009
[14] J. E. Jayne, I. Namioka, and C. A. Rogers, Topological properties of Banach spaces , Proc. Lond. Math. Soc. (3) 66 (1993), no. 3, 651-672. · Zbl 0793.54026
[15] J. L. Kelley, General Topology , Van Nostrand, Toronto, 1955.
[16] G. Köthe, Topological Vector Spaces, I , Grundlehren Math. Wiss. 159 , Springer, New York, 1969.
[17] W. Marciszewski and R. Pol, On Banach spaces whose norm-open sets are \(\mathcal{F} _{\sigma}\)-sets in the weak topology , J. Math. Anal. Appl. 350 (2009), no. 2, 708-722. · Zbl 1167.46311
[18] A. Moltó, J. Orihuela, and S. Troyanski, Locally uniformly rotund renorming and fragmentability , Proc. Lond. Math. Soc. (3) 75 (1997), no. 3, 619-640. · Zbl 0909.46011
[19] A. Moltó, J. Orihuela, S. Troyanski, and M. Valdivia, On weakly locally uniformly rotund Banach spaces , J. Funct. Anal. 163 (1999), no. 2, 252-271. · Zbl 0927.46010
[20] A. Moltó, J. Orihuela, S. Troyanski, and M. Valdivia, Kadec and Krein-Milman properties , C. R. Math. Acad. Sci. Paris 331 (2000), no. 6, 459-464. · Zbl 0983.46012
[21] A. Moltó, J. Orihuela, S. Troyanski, and M. Valdivia, A nonlinear transfer technique for renorming , Lecture Notes in Math. 1951 , Springer, Berlin, 2009. · Zbl 1182.46001
[22] J. Nagata, Modern General Topology , North-Holland, Amsterdam, 1974.
[23] I. Namioka, Radon-Nikodým compact spaces and fragmentability , Mathematika 34 (1987), no. 2, 258-281. · Zbl 0654.46017
[24] L. Oncina, The JNR property and the Borel structure of a Banach space , Serdica Math. J. 26 (2000), no. 1, 13-32. · Zbl 0953.46008
[25] J. Orihuela and S. Troyanski, Deville’s master lemma and Stone’s discreteness in renorming theory , J. Convex Anal. 16 (2009), no. 3-4, 959-972. · Zbl 1192.46009
[26] A. M. Plichko and D. Yost, The Radon-Nikodým property does not imply the separable complementation property , J. Funct. Anal. 180 (2001), no. 2, 481-487. · Zbl 0992.46014
[27] M. Raja, Kadec norms and Borel sets in a Banach space , Studia Math. 136 (1999), no. 1, 1-16. · Zbl 0935.46021
[28] M. Raja, Locally uniformly rotund norms , Mathematika 46 (1999), no. 2, 343-358. · Zbl 1031.46022
[29] N. K. Ribarska, On having a countable cover by sets of small local diameter , Studia Math. 140 (2000), no. 2, 99-116. · Zbl 0987.46018
[30] N. K. Ribarska and V. D. Babev, A stability property for locally uniformly rotund renorming , J. Math. Anal. Appl. 350 (2009), no. 2, 811-828. · Zbl 1168.46003
[31] S. Todorčević, Representing trees as relatively compact subsets of the first Baire class , Bull. Cl. Sci. Math. Nat. Sci. Math. 30 (2005), 29-45. · Zbl 1144.46009
[32] S. L. Troyanski, Locally uniformly convex norms , C. R. Acad. Bulgare Sci. 32 (1979), no. 9, 1167-1169.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.