×

Observer design based on immersion technics and canonical form. (English) Zbl 1388.93023

Summary: A crucial problem in immersion based observer design is the case where the dimension of the immersed system is greater than that of the original system, and the analytical expression of the inverse of the immersion is unknown. In this paper, we propose a method for constructing observers for such autonomous nonlinear system

MSC:

93B07 Observability
93C10 Nonlinear systems in control theory
93B10 Canonical structure
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hermann, R.; Krener, A.-J., Linearization by output injection and nonlinear observers, IEEE Trans. Automat. Control, AC-22, 2, 728-740, (1977) · Zbl 0396.93015
[2] Baras, J. S.; Bensoussan, A.; James, N. R., Dynamic observers as asymptotic limits of recursive filters: special cases, SIAM J. Appl. Math., 48, 5, 1147-1158, (1988) · Zbl 0658.93017
[3] Deza, F.; Busvelle, E.; Gauthier, J.-P.; Rakotopara, D., High gain estimation for nonlinear systems, Systems Control Lett., 18, 4, 295-299, (1992) · Zbl 0779.93018
[4] Boizot, Nicolas; Busvelle, Eric; Gauthier, Jean-Paul, An adaptive high-gain observer for nonlinear systems, Automatica, 46, 9, 1483-1488, (2010) · Zbl 1201.93122
[5] Krener, A. J.; Isidori, A., Linearization by output injection and nonlinear observers, Systems Control Lett., 3, 47-52, (1983) · Zbl 0524.93030
[6] Krener, A. J.; Respondek, W., Nonlinear observer with linearizable error dynamics, SIAM J. Control Optim., 34, 241-247, (1985)
[7] Xia, X. H.; Gao, W. B., Nonlinear observer with linearizable error dynamics, SIAM J. Control Optim., 27, 199-216, (1989)
[8] Phelps, A.-R., On constructing nonlinear observers, SIAM J. Control Optim., 516-534, 29, (1991) · Zbl 0738.93032
[9] Glumineau, A.; Moog, C.-H.; Plestan, F., , new algebraic-geometric conditions for the linearization by input-output injection, IEEE Trans. Automat. Control, 41, 4, 598-603, (1996) · Zbl 0851.93018
[10] Respondek, W.; Pogromsky, A.; Nijmeijer, H., Time scaling for observer design with linearization erro dynamics, Automatica, 40, 277-285, (2004) · Zbl 1055.93010
[11] Zheng, G.; Boutat, D.; Barbot, J.-P., Single output-dependent observability normal form, SIAM J. Control Optim., 46, 2242-2255, (2007) · Zbl 1207.15010
[12] Kazantzis, Nikolaos; Kravaris, Costas, Nonlinear observer design using lyapunov’s auxiliary theorem, Systems Control Lett., 30, 197-216, (1998) · Zbl 0909.93002
[13] Kravaris, C.; Sotiropoulos, V.; Kazantzis, N.; Xiao, M.-Q.; Krener, A.-J., Nonlinear observer design for state and disturbance estimation, Systems Control Lett., 56, 730-735, (2007) · Zbl 1123.93026
[14] Andrieu, Vincent, Convergence speed of nonlniear luenberger observer, SIAM J. Control Optim., 52, 5, 2831-2856, (2014) · Zbl 1304.93031
[15] Gauthier, J. P.; Hammouri, H.; Othman, S., A simple observer for nonlinear systems. application to bioreactors, IEEE Trans. Automat. Control, 37, 6, (1992) · Zbl 0775.93020
[16] Gauthier, J. P.; Kupka, I., Observability and observers for nonlinear systems, SIAM J. Control Optim., 32, 975-997, (1994) · Zbl 0802.93008
[17] G. Bornard, H. Hammouri, A high gain observer for a class of uniformly observable systems, in: Proc. 30th IEEE Conference on Decision and Control, Brighton, vol. 122, 1991, pp. 176-192.; G. Bornard, H. Hammouri, A high gain observer for a class of uniformly observable systems, in: Proc. 30th IEEE Conference on Decision and Control, Brighton, vol. 122, 1991, pp. 176-192. · Zbl 0864.93018
[18] Ciccarella, G.; Dalla Mora, M.; Germani, A., A luenberger-like observer for nonlinear systems, Systems Control Lett., 47, 3, 537-556, (1993) · Zbl 0772.93018
[19] Gauthier, J. P.; Kupka, I. A.K., Observability for systems with more outputs than inputs, Math. Z., 223, 47-78, (1996) · Zbl 0863.93008
[20] Schaffner, J.; Zeitz, M., Decentral nonlinear observer design using a block-triangular form, Internat. J. Systems Sci., 30, 10, (1999) · Zbl 1090.93527
[21] Hammouri, H.; Targui, B.; Armanet, F., High gain observer based on a triangular structure, Internat. J. Robust Nonlinear Control, 12, 6, 497-518, (2002) · Zbl 1006.93007
[22] Shim, H.; Young, I. S.; Son; Jin H. Seo, H. S., Semi-global observer for multi-output nonlinear systems, Systems Control Lett., 42, 233-244, (2001) · Zbl 0985.93006
[23] Hammouri, H.; Farza, M., Nonlinear observers for locally uniformly observable systems, ESAIM Control Optim. Calc. Var., 9, 353-370, (2003) · Zbl 1063.93012
[24] Hammouri, H.; Bornard, G.; Busawon, K., High gain observer based on a structured nonlinear systems, IEEE-TAC, 55, 4, (2010) · Zbl 1368.93200
[25] Farza, M.; MŠSaad, M.; Triki, M.; Maatoug, T., High gain observer for a class of non-triangular systems, Systems Control Lett., 60, 1, 27-35, (2011) · Zbl 1207.93014
[26] Oueder, M.; Farza, M.; Abdennour, R. B.; MŠSaad, M., A high gain observer with updated gain for a class of MIMO non-triangular systems, Systems Control Lett., 61, 2, 298-308, (2012) · Zbl 1238.93020
[27] J.-P. Gauthier, H. Hammouri, I. Kupka, Observers for nonlinear systems, in: Proc. 30th IEEE Conference on Decision and Control, Brighton, 1991, pp. 1483-1489.; J.-P. Gauthier, H. Hammouri, I. Kupka, Observers for nonlinear systems, in: Proc. 30th IEEE Conference on Decision and Control, Brighton, 1991, pp. 1483-1489.
[28] Jouan, P.; Gauthier, J. P., Finite singularities of nonlinear systems. output stabilization, observability and observers, J. Dyn. Control Syst., 2, 2, 255-288, (1996) · Zbl 0944.93026
[29] Gauthier, J.-P.; Kupka, I., Deterministic observation theory and applications, (2001), Cambridge University Press · Zbl 0990.93001
[30] V. Andrieu, J.-B. Eytard, L. Praly, Dynamic extension without inversion for observers. Proc, in: 53th IEEE Conference on Decision and Control, December 15-17, 2014, Los Angeles, California, USA, 2014.; V. Andrieu, J.-B. Eytard, L. Praly, Dynamic extension without inversion for observers. Proc, in: 53th IEEE Conference on Decision and Control, December 15-17, 2014, Los Angeles, California, USA, 2014.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.