×

zbMATH — the first resource for mathematics

Two-sided linear split quaternionic equations with n unknowns. (English) Zbl 1311.15005
The split quaternions, a similar concept to Hamilton quaternions, are generalizations of complex numbers to higher dimension. The algebra of the split quaternions is a \(4\)-dimensional real algebra containing zero divisors, nilpotent elements and nontrivial idempotents. In this paper, the authors consider the linear split quaternionic equations with terms of the form \(axb\). They present a method of solving such equations with several unknowns, with examples as illustrations.

MSC:
15A06 Linear equations (linear algebraic aspects)
15B33 Matrices over special rings (quaternions, finite fields, etc.)
11R52 Quaternion and other division algebras: arithmetic, zeta functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/978-1-4612-3650-4 · doi:10.1007/978-1-4612-3650-4
[2] Cockle J, Phil. Mag 35 pp 434– (1849)
[3] DOI: 10.4134/JKMS.2007.44.6.1313 · Zbl 1140.15016 · doi:10.4134/JKMS.2007.44.6.1313
[4] DOI: 10.1016/j.geomphys.2005.02.004 · Zbl 1088.53010 · doi:10.1016/j.geomphys.2005.02.004
[5] DOI: 10.1016/j.aml.2008.03.020 · Zbl 1163.15303 · doi:10.1016/j.aml.2008.03.020
[6] Özdemir M, Conf. Jangjeon Math. Soc 16 pp 108– (2005)
[7] Brody DC, J. Phys. A: Math. Theory 44 pp 1– (2011)
[8] DOI: 10.1007/s00006-010-0264-2 · Zbl 1226.15002 · doi:10.1007/s00006-010-0264-2
[9] DOI: 10.1007/s00211-009-0274-y · Zbl 1190.65075 · doi:10.1007/s00211-009-0274-y
[10] Alagöz Y, Miskolc Math. Notes 13 pp 223– (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.