×

A computational approach inspired by simulated annealing to study the stability of protein interaction networks in cancer and neurological disorders. (English) Zbl 1411.92120

Summary: Molecular networks provide a powerful tool for the study of biomedical systems, in particular several studies have detected alterations of the network structure associated to disease states. Here we propose that diseases cannot only alter the structure of the network but also its stability. To evaluate network stability we have developed a new methodological framework. Our approach is an adaptation of the classical Deterministic Simulated Annealing algorithm to work with discrete states. Adjusted energy values are used to compare the network stability in disease and control states. The results show that cancer networks are less stable than the Alzheimer’s disease (AD) ones. These results can be interpreted in terms of our previous observations on cancer and AD inverse comorbidity, i.e. AD patients have lower than expected risk to suffer cancer.

MSC:

92C42 Systems biology, networks
92C50 Medical applications (general)

Software:

HIPPIE; fRMA; affy
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Behrens MI, Lendon C, Roe CM (2009) A common biological mechanism in cancer and Alzheimer’s disease? Curr Alzheimer Res 6(3):196-204
[2] Behrens MI, Silva M, Salech F, Ponce DP, Merino D, Sinning M, Xiong C, Roe CM, Quest AFG (2012) Inverse susceptibility to oxidative death of lymphocytes obtained from Alzheimer’s patients and skin cancer survivors: increased apoptosis in Alzheimer’s and reduced necrosis in cancer. J Gerontol 67(10):1036-1040. doi:10.1093/gerona/glr258
[3] Bennett MK, Scheller RH (1993) The molecular machinery for secretion is conserved from yeast to neurons. Proce Natl Acad Sci USA 90(7):2559-2563
[4] Börnigen D, Pers TH, Thorrez L, Huttenhower C, Moreau Y, Brunak S (2013) Concordance of gene expression in human protein complexes reveals tissue specificity and pathology. Nucleic Acids Res 41(18):e171. doi:10.1093/nar/gkt661
[5] Callaway DS, Newman ME, Strogatz SH, Watts DJ (2000) Network robustness and fragility: percolation on random graphs. Phys Rev Lett 85(25):5468-5471
[6] Catalá-López F, Gènova-Maleras R, Vieta E, Tabarés-Seisdedos R (2013) The increasing burden of mental and neurological disorders. Eur Neuropsychopharmacol 23(11):1337-1339. doi:10.1016/j.euroneuro.2013.04.001
[7] Cerny V (1985) Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm I. J Optim Theory Appl 45(l):41-51 · Zbl 0534.90091
[8] Chuang HY, Lee E, Liu YT, Lee D, Ideker T (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3:140. doi:10.1038/msb4100180
[9] Cohen R, Erez K, ben-Avraham D, Havlin S (2000) Resilience of the internet to random breakdowns. Phys Rev Lett 85(21):4626-4628
[10] Crick F (1970) Central dogma of molecular biology. Nature 227(5258):561-563
[11] de la Cruz García JM, Herrera Caro PJ, Pajares Martinsanz G, Guijarro Mata-García M (2011) Combining support vector machines and simulated annealing for stereovision matching with fish eye lenses in forest environments. Expert Syst Appl 38(7):8622-8631
[12] de la Cruz García JM, Herrera Caro PJ, Pajares Martinsanz G, Guijarro Mata-García M (2002) Current topics in computational molecular biology. MIT Press, Cambridge, p 542
[13] Duda RO, Hart PE, Stork DG (2007) Pattern classification, New York: John Wiley & Sons, 2001, pp. xx + 654, ISBN: 0-471-05669-3. J Classif 24(2):305-307. doi:10.1007/s00357-007-0015-9
[14] Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics (Oxf, Engl) 20(3):307-315. doi:10.1093/bioinformatics/btg405
[15] Greengard P, Valtorta F, Czernik AJ, Benfenati F (1993) Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259(5096):780-785
[16] Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan, New York · Zbl 0828.68103
[17] Hosaka M, Hammer RE, Südhof TC (1999) A phospho-switch controls the dynamic association of synapsins with synaptic vesicles. Neuron 24(2):377-387
[18] Hudson NJ, Reverter A, Dalrymple BP (2009) A differential wiring analysis of expression data correctly identifies the gene containing the causal mutation. PLoS Comput Biol 5(5):e1000382. doi:10.1371/journal.pcbi.1000382
[19] Ibáñez K, Boullosa C, Tabarés-Seisdedos R, Baudot A, Valencia A (2014) Molecular evidence for the inverse comorbidity between central nervous system disorders and cancers detected by transcriptomic meta-analyses. PLoS Genet 10(2):e1004173. doi:10.1371/journal.pgen.1004173
[20] Iyer S, Killingback T, Sundaram B, Wang Z (2013) Attack robustness and centrality of complex networks. PLoS One 8(4):e59613. doi:10.1371/journal.pone.0059613
[21] Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41-42. doi:10.1038/35075138
[22] Jonsson PF, Bates PA (2006) Global topological features of cancer proteins in the human interactome. Bioinformatics (Oxf, Engl) 22(18):2291-2297. doi:10.1093/bioinformatics/btl390
[23] Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6(6):451-464. doi:10.1038/nrg1615
[24] Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671-680. doi:10.1126/science.220.4598.671 · Zbl 1225.90162
[25] Komurov K, Ram PT (2010) Patterns of human gene expression variance show strong associations with signaling network hierarchy. BMC Syst Biol 4:154. doi:10.1186/1752-0509-4-154
[26] Laakso M, Hautaniemi S (2010) Integrative platform to translate gene sets to networks. Bioinformatics (Oxf, Engl) 26(14):1802-1803. doi:10.1093/bioinformatics/btq277
[27] Liu CH, Chen TC, Chau GY, Jan YH, Chen CH, Hsu CN, Lin KT, Juang YL, Lu PJ, Cheng HC, Chen MH, Chang CF, Ting YS, Kao CY, Hsiao M, Huang CYF (2013) An analysis of protein-protein interactions in cross-talk pathways reveals CRKL as a novel prognostic marker in hepatocellular carcinoma. Mol Cell Proteomics 12(5):1335-1349. doi:10.1074/mcp.O112.020404
[28] Loeb LA (2011) Human cancers express mutator phenotypes: origin, consequences and targeting. Nat Rev Cancer 11(6):450-457. doi:10.1038/nrc3063
[29] McCall MN, Jaffee HA, Irizarry RA (2012) fRMA ST: frozen robust multiarray analysis for Affymetrix Exon and Gene ST arrays. Bioinformatics (Oxf, Engl) 28(23):3153-3154. doi:10.1093/bioinformatics/bts588
[30] McCall MN, Uppal K, Jaffee HA, Zilliox MJ, Irizarry RA (2011) The Gene Expression Barcode: leveraging public data repositories to begin cataloging the human and murine transcriptomes. Nucleic Acids Res 39(Database issue):D1011-D1015. doi:10.1093/nar/gkq1259
[31] Milanesi L, Romano P, Castellani G, Remondini D, Liò P (2009) Trends in modeling biomedical complex systems. BMC Bioinform 10(Suppl 1):I1. doi:10.1186/1471-2105-10-S12-I1
[32] Murga M, Fernández-Capetillo O (2007) Genomic instability: on the birth and death of cancer. Clin Transl Oncol 9(4):216-220
[33] Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11(3):220-228. doi:10.1038/nrm2858
[34] Pajares G, de la Cruz JM (2004) On combining support vector machines and simulated annealing in stereovision matching. IEEE Trans Syst Man Cybern B Cybern 34(4):1646-1647
[35] Pujana MA, Han J-DJ, Starita LM, Stevens KN, Tewari M, Ahn JS et al (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 39(11):1338-1349
[36] Rambaldi D, Giorgi FM, Capuani F, Ciliberto A, Ciccarelli FD (2008) Low duplicability and network fragility of cancer genes. Trends Genet 24(9):427-430. doi:10.1016/j.tig.2008.06.003
[37] Sánchez-Lladó FJ, Pajares G, López-Martínez C (2011) Improving the wishart synthetic aperture radar image classifications through deterministic simulated annealing. ISPRS J Photogramm Remote Sens 66(6):845-857. doi:10.1016/j.isprsjprs.2011.09.007
[38] Schaefer MH, Fontaine J-F, Vinayagam A, Porras P, Wanker EE, Andrade-Navarro MA (2012) HIPPIE: integrating protein interaction networks with experiment based quality scores. PloS One 7(2):e31826. doi:10.1371/journal.pone.0031826
[39] Schramm G, Kannabiran N, König R (2010) Regulation patterns in signaling networks of cancer. BMC Syst Biol 4:162. doi:10.1186/1752-0509-4-162
[40] Solé RV, Valverde S, Rodriguez-Caso C, Sardanyés J (2014) Can a minimal replicating construct be identified as the embodiment of cancer? BioEssays: News Rev Mol Cell Dev Biol 36(5):503-512. doi:10.1002/bies.201300098
[41] Tabarés-Seisdedos R, Dumont N, Baudot A, Valderas JM, Climent J, Valencia A, Crespo-Facorro B, Vieta B, Gómez-Beneyto M, Martínez S, Rubenstein JL et al (2011) No paradox, no progress: inverse cancer comorbidity in people with other complex diseases. Lancet Oncol 12(6):604-608. doi:10.1016/S1470-2045(11)70041-9
[42] Tabarés-Seisdedos R, Rubenstein JL (2013) Inverse cancer comorbidity: a serendipitous opportunity to gain insight into CNS disorders. Nat Rev Neurosci 14(April):293-304. doi:10.1038/nrn3464
[43] Teschendorff AE, Severini S (2010) Increased entropy of signal transduction in the cancer metastasis phenotype. BMC Syst Biol 4(1):104. doi:10.1186/1752-0509-4-104
[44] Van Pel DM, Barrett IJ, Shimizu Y, Sajesh BV, Guppy BJ, Pfeifer T, McManus KJ, Hieter P (2013) An evolutionarily conserved synthetic lethal interaction network identifies FEN1 as a broad-spectrum target for anticancer therapeutic development. PLoS Genet 9(1):e1003254. doi:10.1371/journal.pgen.1003254
[45] Wachi S, Yoneda K, Wu R (2005) Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics (Oxf, Engl) 21(23):4205-4208. doi:10.1093/bioinformatics/bti688
[46] Wadhwa N, Mathew BB, Jatawa SK, Tiwari A (2013) Genetic instability in urinary bladder cancer: an evolving hallmark. J Postgrad Med 59(4):284-288. doi:10.4103/0022-3859.123156
[47] West J, Bianconi G, Severini S, Teschendorff AE, Genomics SC (2012) Differential network entropy reveals cancer system hallmarks. Sci Rep 2:802. doi:10.1038/srep00802
[48] Wu J, Vallenius T, Ovaska K, Westermarck J, Mäkelä TP, Hautaniemi S (2009) Integrated network analysis platform for protein-protein interactions. Nat Methods 6(1):75-77. doi:10.1038/nmeth.1282
[49] Wuchty S, Almaas E (2005) Peeling the yeast protein network. Proteomics 5(2):444-449. doi:10.1002/pmic.200400962
[50] Xia J, Sun J, Jia P, Zhao Z (2011) Do cancer proteins really interact strongly in the human protein-protein interaction network? Comput Biol Chem 35(3):121-125. doi:10.1016/j.compbiolchem.2011.04.005
[51] Yao PJ, Zhu M, Pyun EI, Brooks AI, Therianos S, Meyers VE, Coleman PD (2003) Defects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer’s disease. Neurobiol Dis 12(2):97-109
[52] Zilliox MJ, Irizarry RA (2007) A gene expression bar code for microarray data. Nat Methods 4(11):911-913. doi:10.1038/nmeth1102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.