×

zbMATH — the first resource for mathematics

Adaptive dead-beat control law for trajectory tracking of robotic manipulators. (English) Zbl 0825.93353
MSC:
93C40 Adaptive control/observation systems
93C85 Automated systems (robots, etc.) in control theory
93E10 Estimation and detection in stochastic control theory
93C55 Discrete-time control/observation systems
Keywords:
time-dependent
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Dubowsky, ASME J. Dyn. Syst. Meas. Control 101 pp 193– (1979) · Zbl 0415.93017 · doi:10.1115/1.3426424
[2] and , ’An adaptive method for trajectory control of manipulators’, Proc. 8th IFAC World Congr., Kyoto, 1981.
[3] Balestrino, ASME J. Dyn. Syst Meas. Control 105 pp 143– (1983)
[4] Balestrino, Automatica 20 pp 190– (1983)
[5] Model Reference Adaptive Control of Manipulators, Research Studies Press, Taunton, 1990.
[6] Koivo, IEEE Trans. Automatic Control AC-28 pp 162– (1983)
[7] Lee, IEEE Trans. Automatic Control AC-29 pp 837– (1984)
[8] Lee, ASME J. Dyn. Syst. Meas. Control 106 pp 134– (1984)
[9] Koivo, ASME J. Dyn. Syst. Meas. Control 107 pp 316– (1985)
[10] Backes, ASME J. Dyn. Syst. Meas. Control 108 pp 146– (1986)
[11] , , and , ’Simplified PID self-tuning controller for robotic manipulators’, Proc. 24th IEEE Conf. on Decision and Control, Athens, 1986, Vol. 3, pp. 1886–1887.
[12] and , ’Adaptive methodologies and robotics’, Proc. 24th IEEE Conf. on Decision and Control, Athens, 1986, Vol. 3, pp. 1882–1885.
[13] Fundamentals for Control of Robotics Manipulators, Wiley, Singapore, 1989.
[14] Slotine, Int. J. Robot. Res. 6 pp 49– (1987)
[15] Slotine, IEEE Trans. Automatic Control AC-33 pp 995– (1988)
[16] Sadegh, Int. J. Robot. Res. 9 pp 74– (1990)
[17] Craig, Int. J. Robot. Res. 6 pp 16– (1987)
[18] and , ’Stability analysis of an adaptive controller for robotic manipulators’, Proc. 1987 IEEE Int. Conf. on Robotics and Automation, Vol. 3, IEEE, New York, 1987, 1223–1229.
[19] Mahmoud, IEEE Trans. Automatic Control AC-39 pp 148– (1994)
[20] Leung, IEEE Trans. Automatic Control AC-36 pp 347– (1991)
[21] Digital Control Systems, Springer, Berlin, 1981. · doi:10.1007/978-3-662-02319-8
[22] Jetto, Int. J. Control 50 pp 349– (1989)
[23] Discrete Linear Control: the Polynomial Equation Approach, Wiley, New York, 1978.
[24] Sirisena, IEEE Trans. Automatic Control AC-20 pp 116– (1985)
[25] Franklin, IEEE Trans. Automatic Control AC-31 pp 661– (1986)
[26] Wolovich, Int. J. Control 37 pp 567– (1983) · Zbl 0502.93052
[27] Fortescue, Automatica 17 pp 831– (1981)
[28] ’Adaptive control with forgetting factor’, Proc. IFAC World Congr., Kyoto, 1981.
[29] Goodwin, Proc. IEE 130 pp 6– (1983) · Zbl 0538.93040 · doi:10.1049/ip-d.1983.0002
[30] Adaptive Control Systems, Marcel Dekker, New York, 1987.
[31] Stochastic Processes and Filtering Theory, Academic, New York, 1970. · Zbl 0203.50101
[32] and , Optimal Filtering, Prentice-Hall, Englewood Cliffs, NJ, 1979.
[33] Warvick, Int. J. Control 44 pp 651– (1986)
[34] Robot Manipulators, MIT Press, Cambridge, MA, 1982.
[35] Introduction to Robotics: Mechanics and Control, Addison-Wesley, Reading, MA, 1986.
[36] Nicosia, Automatica 20 pp 635– (1984)
[37] and , ’Parameter estimation in self-tuning control of robotic manipulators’, in Computing and Computers for Control Systems, Boltzer, 1989, pp. 15–62.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.