×

Applied mathematics and nonlinear sciences in the war on cancer. (English) Zbl 1381.92047

Summary: Applied mathematics and nonlinear sciences have an enormous potential for application in cancer. Mathematical models can be used to raise novel hypotheses to test, develop optimized treatment schedules and personalize therapies. However. this potential is yet to be proven in real-world applications to specific cancer types. In this paper we discuss how we think mathematical knowledge may be better used to improve cancer patients’ outcome.

MSC:

92C50 Medical applications (general)
92C37 Cell biology
92C17 Cell movement (chemotaxis, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. L. Siegel, K. D. Miller and A. Jemal, (2016), Cancer Statistics, 2016, CA: A Cancer Journal for Clinicians, 66, No 1, 7-30.; Siegel, R. L.; Miller, K. D.; Jemal, A., Cancer Statistics, 2016, CA: A Cancer Journal for Clinicians, 66, 1, 7-30 (2016) · doi:10.3322/caac.21332
[2] G. Gigerenzer et al., (2007), Helping Doctors and Patients Make Sense of Health Statistics, Psychological Science in the Public Interest, 8, No 2, 53-96.; Gigerenzer, G., Helping Doctors and Patients Make Sense of Health Statistics, Psychological Science in the Public Interest, 8, 2, 53-96 (2007) · doi:10.1111/j.1539-6053.2008.00033.x
[3] H. M. Byrne, (2010), Dissecting cancer through mathematics: from the cell to the animal model, Nature Reviews Cancer, 10, 221-230.; Byrne, H. M., Dissecting cancer through mathematics: from the cell to the animal model, Nature Reviews Cancer, 10, 221-230 (2010) · doi:10.1038/nrc2808
[4] P. M. Altrock, L. L. Liu and F. Michor, (2015), The mathematics of cancer: integrating quantitative models, Nature Reviews Cancer, 15, 730-745.; Altrock, P. M.; Liu, L. L.; Michor, F., The mathematics of cancer: integrating quantitative models, Nature Reviews Cancer, 15, 730-745 (2015) · doi:10.1038/nrc4029
[5] Alexander R. A. Anderson and V. Quaranta, (2008), Integrative mathematical oncology, Nature Reviews Cancer, 8, 227-234.; Anderson, Alexander R. A.; Quaranta, V., Integrative mathematical oncology, Nature Reviews Cancer, 8, 227-234 (2008) · doi:10.1038/nrc2329
[6] L. B. Edelman, J. A. Eddy and N. D. Price, (2010), In silico models of cancer, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2, No 4, 438-459.; Edelman, L. B.; Eddy, J. A.; Price, N. D., In silico models of cancer, Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2, 4, 438-459 (2010) · doi:10.1002/wsbm.75
[7] Thomas S. Deisboeck et al., (2011), Multiscale Cancer Modeling, Annual Review of Biomedical Engineering, 13, 127-155. doi; Deisboeck, Thomas S., Multiscale Cancer Modeling, Annual Review of Biomedical Engineering, 13, 127-155 (2011) · doi:10.1146/annurev-bioeng-071910-124729
[8] J. Clairambault, (2011), Optimizing cancer pharmacotherapeutics using mathematical modeling and a systems biology approach, Personalized Medicine, 8, No 3, 271-286.; Clairambault, J., Optimizing cancer pharmacotherapeutics using mathematical modeling and a systems biology approach, Personalized Medicine, 8, 3, 271-286 (2011) · doi:10.2217/pme.11.20
[9] T. Jackson, N. Komarova and K. Swanson, (2014), Mathematical Oncology: Using Mathematics to Enable Cancer Discoveries, American Mathematical Monthly, 121, No 9, 840-856.; Jackson, T.; Komarova, N.; Swanson, K., Mathematical Oncology: Using Mathematics to Enable Cancer Discoveries, American Mathematical Monthly, 121, 9, 840-856 (2014) · Zbl 1327.92020 · doi:10.4169/amer.math.monthly.121.09.840
[10] X. L. Li et al., (2015), Integrating Multiscale Modeling with Drug Effects for Cancer Treatment, Cancer Informatics, 14 (Suppl 5), 21-31.; Li, X. L., Integrating Multiscale Modeling with Drug Effects for Cancer Treatment, Cancer Informatics, 14, 21-31 (2015) · doi:10.4137/CIN.S30797
[11] F. Azuaje, (2016), Computational models for predicting drug responses in cancer research, Briefings in Bioinformatics, 1-10.; Azuaje, F., Computational models for predicting drug responses in cancer research, Briefings in Bioinformatics, 1-10 (2016) · doi:10.1093/bib/bbw065
[12] R. Gallasch et al., (2013), Mathematical models for translational and clinical oncology, Journal of Clinical Bioinformatics, 3, No 23, 1-8.; Gallasch, R., Mathematical models for translational and clinical oncology, Journal of Clinical Bioinformatics, 3, 23, 1-8 (2013) · doi:10.1186/2043-9113-3-23
[13] R. A. Gatenby, (2009), A change of strategy in the war on cancer, Nature, 459, 508-509.; Gatenby, R. A., A change of strategy in the war on cancer, Nature, 459, 508-509 (2009) · doi:10.1038/459508a
[14] B. Oronsky et al., (2015), The war on cancer: a military perspective, Frontiers in Oncology, 4, Article 387, 1-5. doi 10.3389/fonc.2014.00387; Oronsky, B., The war on cancer: a military perspective, Frontiers in Oncology 4, 387, 1-5 (2015) · doi:10.3389/fonc.2014.00387
[15] A. R. Akhmetzhanov and M. E. Hochberg, (2015), Dynamics of preventive vs post-diagnostic cancer control using low-impact measures, eLIFE, 4:e06266, 1-27.; Akhmetzhanov, A. R.; Hochberg, M. E., Dynamics of preventive vs post-diagnostic cancer control using low-impact measures, eLIFE, 4:e06266, 1-27 (2015) · doi:10.7554/eLife.06266.001
[16] R. A. Gatenby et al., (2009), Adaptive Therapy, Cancer Research, 69, No 11, 4894-4903.; Gatenby, R. A., Adaptive Therapy, Cancer Research, 69, 11, 4894-4903 (2009) · doi:10.1158/0008-5472.CAN-08-3658
[17] S. Benzekry et al., (2015), Metronomic reloaded: Theoretical models bringing chemotherapy into the era of precision medicine, Seminars in Cancer Biology, 35, 53-61.; Benzekry, S., Metronomic reloaded: Theoretical models bringing chemotherapy into the era of precision medicine, Seminars in Cancer Biology, 35, 53-61 (2015) · doi:10.1016/j.semcancer.2015.09.002
[18] N. André, M. Carré and E. Pasquier, (2014), Metronomics: towards personalized chemotherapy?, Nature Reviews Clinical Oncology, 11, 413-431.; André, N.; Carré, M.; Pasquier, E., Metronomics: towards personalized chemotherapy?, Nature Reviews Clinical Oncology, 11, 413-431 (2014) · doi:10.1038/nrclinonc.2014.89
[19] V. M. Pérez-García and L. A. Pérez-Romasanta, (2016), Extreme protraction for low-grade gliomas: theoretical proof of concept of a novel therapeutical strategy, Mathematical Medicine and Biology, 33, No 3, 253-271.; Pérez-García, V. M.; Pérez-Romasanta, L. A., Extreme protraction for low-grade gliomas: theoretical proof of concept of a novel therapeutical strategy, Mathematical Medicine and Biology, 33, 3, 253-271 (2016) · Zbl 1400.92279 · doi:10.1093/imammb/dqv017
[20] Y. Iwasa and F. Michor, (2011), Evolutionary Dynamics of Intratumor Heterogeneity, PLoS ONE, 6, No 3, e17866.; Iwasa, Y.; Michor, F., Evolutionary Dynamics of Intratumor Heterogeneity, PLoS ONE, 6, 3 (2011) · Zbl 1447.92097 · doi:10.1371/journal.pone.0017866
[21] B. Stransky and S. J. de Souza, (2013), Modeling tumor evolutionary dynamics, Frontiers in Physiology, 3, Article 480, 1-6.; Stransky, B.; de Souza, S. J., Modeling tumor evolutionary dynamics, Frontiers in Physiology, 3, 1-6 (2013) · doi:10.3389/fphys.2012.00480
[22] D. Wodarz and N. L. Komarova, (2014), Dynamics of Cancer. Mathematical Foundations of Oncology, World Scientific, Singapore.; Wodarz, D.; Komarova, N. L., Dynamics of Cancer. Mathematical Foundations of Oncology (2014) · Zbl 1318.92001
[23] A. O. Pisco et al., (2013), Non-Darwinian dynamics in therapy-induced cancer drug resistance, Nature Communications, 4, Article 2467, 1-11.; Pisco, A. O., Non-Darwinian dynamics in therapy-induced cancer drug resistance, Nature Communications, 4, 1-11 (2013) · doi:10.1038/ncomms3467
[24] S. Prokopiou et al., (2015), A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation, Radiation Oncology, 10, No 159, 1-8.; Prokopiou, S., A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation, Radiation Oncology, 10, 159, 1-8 (2015) · doi:10.1186/s13014-015-0465-x
[25] A. L. Baldock et al., (2014), Patient-Specific Metrics of Invasiveness Reveal Significant Prognostic Benefit of Resection in a Predictable Subset of Gliomas, PLoS ONE, 9, No 10, e99057.; Baldock, A. L., Patient-Specific Metrics of Invasiveness Reveal Significant Prognostic Benefit of Resection in a Predictable Subset of Gliomas, PLoS ONE, 9, 10 (2014) · doi:10.1371/journal.pone.0099057
[26] R. Rockne et al., (2010), Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach, Physics in Medicine and Biology, 55, No 12, 3271-3285.; Rockne, R., Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach, Physics in Medicine and Biology, 55, 12, 3271-3285 (2010) · doi:10.1088/0031-9155/55/12/001
[27] J. Pérez-Beteta et al., (2016), Glioblastoma: does the pre-treatment geometry matter? A postcontrast T1 MRI-based study, European Radiology, 1-9.; Pérez-Beteta, J., Glioblastoma: does the pre-treatment geometry matter? A postcontrast T1 MRI-based study, European Radiology, 1-9 (2016) · doi:10.1007/s00330-016-4453-9
[28] Y. Hirata et al., (2012), Mathematically modelling and controlling prostate cancer under intermittent hormone therapy, Asian Journal of Andrology, 14, No 2, 270-277.; Hirata, Y., Mathematically modelling and controlling prostate cancer under intermittent hormone therapy, Asian Journal of Andrology, 14, 2, 270-277 (2012) · doi:10.1038/aja.2011.155
[29] D. Molina et al., (2016), Tumour heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker of survival, British Journal of Radiology, 89, No 1064.; Molina, D., Tumour heterogeneity in glioblastoma assessed by MRI texture analysis: a potential marker of survival, British Journal of Radiology, 89, 1064 (2016) · doi:10.1259/bjr.20160242
[30] V. Kumar et al., (2012), Radiomics: the process and the challenges, Magnetic Resonance Imaging, 30, No 9, 1234-1248.; Kumar, V., Radiomics: the process and the challenges, Magnetic Resonance Imaging, 30, 9, 1234-1248 (2012) · doi:10.1016/j.mri.2012.06.010
[31] F. Davnall et al., (2012), Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice?, Insights into Imaging, 3, No 6, 573-589.; Davnall, F., Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice?, Insights into Imaging, 3, 6, 573-589 (2012) · doi:10.1007/s13244-012-0196-6
[32] Y. Kuang, J. D. Nagy and S. E. Eikenberry, (2016), Introduction to Mathematical Oncology, Chapman & Hall/CRC Mathematical and Computational Biology.; Kuang, Y.; Nagy, J. D.; Eikenberry, S. E., Introduction to Mathematical Oncology, Chapman & Hall/CRC Mathematical and Computational Biology. (2016) · Zbl 1341.92002
[33] M. C. Joiner and A. van der Kogel, (2009), Basic Clinical Radiobiology, CRC Press.; Joiner, M. C.; van der Kogel, A., Basic Clinical Radiobiology, CRC Press. (2009)
[34] J. A. Hobinet et al., (2012), Engaging basic scientists in translational research: identifying opportunities, overcoming obstacles, Journal of Translational Medicine, 10, No 72.; Hobinet, J. A., Engaging basic scientists in translational research: identifying opportunities, overcoming obstacles, Journal of Translational Medicine, 10, 72 (2012) · doi:10.1186/1479-5876-10-72
[35] I. D. J. Bross, (1981), Scientific Strategies to Save Your Life: A Statistical Approach to Primary Prevention, Marcel Dekker, New York.; Bross, I. D. J., Scientific Strategies to Save Your Life: A Statistical Approach to Primary Prevention (1981)
[36] G. K. Isbister and R. Bies, (2014), Pharmacometrics: so much mathematics and why planes achieve their destinations with almost perfect results . . . , British Journal of Clinical Pharmacology, 79, No 1, 1-3.; Isbister, G. K.; Bies, R., Pharmacometrics: so much mathematics and why planes achieve their destinations with almost perfect results . . ., British Journal of Clinical Pharmacology, 79, 1, 1-3 (2014) · doi:10.1111/bcp.12514
[37] M. Kline, (1973), Why Johnny can’t add: the failure of the new math, St. Martin’s Press, New York.; Kline, M., Why Johnny can’t add: the failure of the new math (1973)
[38] G. E. P. Box, (1976), Science and Statistics, Journal of the American Statistical Association, 71, No 356, 791-799.; Box, G. E. P., Science and Statistics, Journal of the American Statistical Association, 71, 356, 791-799 (1976) · Zbl 0335.62002 · doi:10.1080/01621459.1976.10480949
[39] F. Dyson, (2004), A meeting with Enrico Fermi, Nature, 427, 297.; Dyson, F., A meeting with Enrico Fermi, Nature, 427, 297 (2004) · doi:10.1038/427297a
[40] S. Basu and J. Andrews, (2013), Complexity in Mathematical Models of Public Health Policies: A Guide for Consumers of Models, PLoS Medicine, 10, No 10, e1001540.; Basu, S.; Andrews, J., Complexity in Mathematical Models of Public Health Policies: A Guide for Consumers of Models, PLoS Medicine, 10, 10 (2013) · doi:10.1371/journal.pmed.1001540
[41] A. J. Vickers, (2011), Prediction models in cancer care, CA: A Cancer Journal for Clinicians, 61, No 5, 315-326.; Vickers, A. J., Prediction models in cancer care, CA: A Cancer Journal for Clinicians, 61, 5, 315-326 (2011) · doi:10.3322/caac.20118
[42] U. Alon, (2006), An Introduction to Systems Biology: Design Principles of Biological Circuits, Chapman & Hall/CRC, London.; Alon, U., An Introduction to Systems Biology: Design Principles of Biological Circuits (2006) · Zbl 1141.92002
[43] D. Hanahan and R. A. Weinberg, (2011), Hallmarks of Cancer: The Next Generation, Cell, 144, No 5, 646-674.; Hanahan, D.; Weinberg, R. A., Hallmarks of Cancer: The Next Generation, Cell, 144, 5, 646-674 (2011) · doi:10.1016/j.cell.2011.02.013
[44] A. Lorz et al., (2013), Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies, ESAIM: Mathematical Modelling and Numerical Analysis, 47, No 2, 377-399.; Lorz, A., Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies, ESAIM: Mathematical Modelling and Numerical Analysis, 47, 2, 377-399 (2013) · Zbl 1274.92025 · doi:10.1051/m2an/2012031
[45] O. Lavi et al., (2013), The Role of Cell Density and Intratumoral Heterogeneity in Multidrug Resistance, Cancer Research, 73, No 24, 7168-7175.; Lavi, O., The Role of Cell Density and Intratumoral Heterogeneity in Multidrug Resistance, Cancer Research, 73, 24, 7168-7175 (2013) · doi:10.1158/0008-5472.CAN-13-1768
[46] J. Greene et al., (2014), The Impact of Cell Density and Mutations in a Model of Multidrug Resistance in Solid Tumors, Bulletin of Mathematical Biology, 76, No 3, 627-653.; Greene, J., The Impact of Cell Density and Mutations in a Model of Multidrug Resistance in Solid Tumors, Bulletin of Mathematical Biology, 76, 3, 627-653 (2014) · Zbl 1329.92055 · doi:10.1007/s11538-014-9936-8
[47] J. Pasquieret al. (2011), Consequences of cell-to-cell P-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model, Biology Direct, 6, No 5, 1-18.; Pasquieret al, J., Consequences of cell-to-cell P-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model, Biology Direct, 6, 5, 1-18 (2011) · doi:10.1186/1745-6150-6-5
[48] M. R. Durán et al., (2016), Transfer of Drug Resistance Characteristics Between Cancer Cell Subpopulations: A Study Using Simple Mathematical Models, Bulletin of Mathematical Biology, 78, No 6, 1218-1237.; Durán, M. R., Transfer of Drug Resistance Characteristics Between Cancer Cell Subpopulations: A Study Using Simple Mathematical Models, Bulletin of Mathematical Biology, 78, 6, 1218-1237 (2016) · Zbl 1348.92077 · doi:10.1007/s11538-016-0182-0
[49] A. C. Obenauf et al., (2015), Therapy-induced tumour secretomes promote resistance and tumour progression, Nature, 520, 368-372.; Obenauf, A. C., Therapy-induced tumour secretomes promote resistance and tumour progression, Nature, 520, 368-372 (2015) · doi:10.1038/nature14336
[50] J. D. Tenenbaum et al., (2016), An informatics research agenda to support precision medicine: seven key areas, Journal of the American Medical Informatics Association, 23, No 4, 791-795.; Tenenbaum, J. D., An informatics research agenda to support precision medicine: seven key areas, Journal of the American Medical Informatics Association, 23, 4, 791-795 (2016) · doi:10.1093/jamia/ocv213
[51] M. C. Lloyd et al., (2015), Pathology to Enhance Precision Medicine in Oncology: Lessons From Landscape Ecology, Advances in Anatomic Pathology, 22, No 4, 267-272.; Lloyd, M. C., Pathology to Enhance Precision Medicine in Oncology: Lessons From Landscape Ecology, Advances in Anatomic Pathology, 22, 4, 267-272 (2015) · doi:10.1097/PAP.0000000000000078
[52] M. Gerlinger et al., (2012), Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing, The New England Journal of Medicine, 366, 883-892.; Gerlinger, M., Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing, The New England Journal of Medicine, 366, 883-892 (2012) · doi:10.1056/NEJMoa1113205
[53] N. Just, (2014), Improving tumour heterogeneity MRI assessment with histograms, British Journal of Cancer, 111, 2205-2213.; Just, N., Improving tumour heterogeneity MRI assessment with histograms, British Journal of Cancer, 111, 2205-2213 (2014) · doi:10.1038/bjc.2014.512
[54] B. M. Ellingson et al., (2015), Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials, Neuro-Oncology, 17, No 9, 1188-1198.; Ellingson, B. M., Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials, Neuro-Oncology, 17, 9, 1188-1198 (2015) · doi:10.1093/neuonc/nov095
[55] N. Gordillo, E. Montseny and P. Sobrevilla, (2013), State of the art survey on MRI brain tumor segmentation, Magnetic Resonance Imaging, 31, No 8, 1426-1438.; Gordillo, N.; Montseny, E.; Sobrevilla, P., State of the art survey on MRI brain tumor segmentation, Magnetic Resonance Imaging, 31, 8, 1426-1438 (2013) · doi:10.1016/j.mri.2013.05.002
[56] R. Meier et al., (2016), Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry, Scientific Reports, 6, Article number: 23376.; Meier, R., Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry, Scientific Reports, 6 (2016) · doi:10.1038/srep23376
[57] E. Crowley et al., (2013), Liquid biopsy: monitoring cancer-genetics in the blood, Nature Reviews Clinical Oncology, 10, 472-484.; Crowley, E., Liquid biopsy: monitoring cancer-genetics in the blood, Nature Reviews Clinical Oncology, 10, 472-484 (2013) · doi:10.1038/nrclinonc.2013.110
[58] L. A. Díaz Jr and A. Bardelii, (2014), Liquid Biopsies: Genotyping Circulating Tumor DNA, Journal of Clinical Oncology, 32, No 6, 579-586.; Jr, L. A. Díaz; Bardelii, A., Liquid Biopsies: Genotyping Circulating Tumor DNA, Journal of Clinical Oncology, 32, 6, 579-586 (2014) · doi:10.1200/JCO.2012.45.2011
[59] P. Y. Wen et al., (2010), Updated Response Assessment Criteria for High-Grade Gliomas: Response Assessment in Neuro-Oncology Working Group, Journal of Clinical Oncology, 28, No 11, 1963-1972.; Wen, P. Y., Updated Response Assessment Criteria for High-Grade Gliomas: Response Assessment in Neuro-Oncology Working Group, Journal of Clinical Oncology, 28, 11, 1963-1972 (2010) · doi:10.1200/JCO.2009.26.3541
[60] D. A. Jaffray, (2012), Image-guided radiotherapy: from current concept to future perspectives, Nature Reviews Clinical Oncology, 9, 688-699.; Jaffray, D. A., Image-guided radiotherapy: from current concept to future perspectives, Nature Reviews Clinical Oncology, 9, 688-699 (2012) · doi:10.1038/nrclinonc.2012.194
[61] J. L. Synge, (1944), Focal Properties of Optical and Electromagnetic Systems, The American Mathematical Monthly, 51, No 4, 185-200.; Synge, J. L., Focal Properties of Optical and Electromagnetic Systems, The American Mathematical Monthly, 51, 4, 185-200 (1944) · Zbl 0060.43908 · doi:10.2307/2305772
[62] L. Bromham, R. Dinnage and X. Hua, (2016), Interdisciplinary research has consistently lower funding success, Nature, 534, 684-687.; Bromham, L.; Dinnage, R.; Hua, X., Interdisciplinary research has consistently lower funding success, Nature, 534, 684-687 (2016) · doi:10.1038/nature18315
[63] 2020-01-09 13:24:18 <mixed-citation><ext-link ext-link-type=“uri” xlink.href=“http://physics.cancer.gov”>http://physics.cancer.gov</ext-link></mixed-citation>; 2020-01-09 13:24:18 Citation within text.
[64] 2020-01-09 13:24:16 <mixed-citation><ext-link ext-link-type=“uri” xlink.href=“https://www.eva2.inserm.fr/EVA/jsp/AppelsOffres/CANCER/index_F.jsp”>https://www.eva2.inserm.fr/EVA/jsp/AppelsOffres/CANCER/index_F.jsp</ext-link></mixed-citation>; 2020-01-09 13:24:16 Citation within text.
[65] 2020-01-09 13:24:18 <mixed-citation><ext-link ext-link-type=“uri” xlink.href=“https://www.jsmf.org/programs/csbc/index.htm”>https://www.jsmf.org/programs/csbc/index.htm</ext-link></mixed-citation>; 2020-01-09 13:24:18 Citation within text.
[66] R. Krishna, H. G. Schaefer and O. J. Bjerrum, (2007), Effective integration of systems biology, biomarkers, biosimulation and modelling in streamlining drug development, European Journal of Pharmaceutical Sciences, 31, No 1, 62-67.; Krishna, R.; Schaefer, H. G.; Bjerrum, O. J., Effective integration of systems biology, biomarkers, biosimulation and modelling in streamlining drug development, European Journal of Pharmaceutical Sciences, 31, 1, 62-67 (2007) · doi:10.1016/j.ejps.2007.02.003
[67] E. A. Jackson, (1992), Perspectives of Nonlinear Dynamics. Vols 1 & 2. Cambridge University Press, New York.; Jackson, E. A., Perspectives of Nonlinear Dynamics, 1 & 2 (1992)
[68] E. N. Lorenz, (1963), Deterministic Nonperiodic Flow, Journal of the Atmospheric Sciences, 20, 130-141.; Lorenz, E. N., Deterministic Nonperiodic Flow, Journal of the Atmospheric Sciences, 20, 130-141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[69] R. N. May, (1976), Simple mathematical models with very complicated dynamics, Nature, 261, 459-467.; May, R. N., Simple mathematical models with very complicated dynamics, Nature, 261, 459-467 (1976) · Zbl 1369.37088 · doi:10.1038/261459a0
[70] V. M. Pérez-García et al., (2011), Bright solitary waves in malignant gliomas, Physical Review E, 84, 021921.; Pérez-García, V. M., Bright solitary waves in malignant gliomas, Physical Review E, 84 (2011) · doi:10.1103/PhysRevE.84.021921
[71] D. Molina et al., (2016), Geometrical Measures Obtained from Pretreatment Postcontrast T1 Weighted MRIs Predict Survival Benefits from Bevacizumab in Glioblastoma Patients, PLoS ONE, 11, No 8, e0161484.; Molina, D. M., Geometrical Measures Obtained from Pretreatment Postcontrast T1 Weighted MRIs Predict Survival Benefits from Bevacizumab in Glioblastoma Patients, PLoS ONE, 11, 8 (2016) · doi:10.1371/journal.pone.0161484
[72] A. Martínez-González et al., (2015), Combined therapies of antithrombotics and antioxidants delay in silico brain tumour progression, Mathematical Medicine and Biology, 32, No 3, 239-262.; Martínez-González, A., Combined therapies of antithrombotics and antioxidants delay in silico brain tumour progression, Mathematical Medicine and Biology, 32, 3, 239-262 (2015) · Zbl 1325.92048 · doi:10.1093/imammb/dqu002
[73] J. M. Ayuso et al., (2015), An in vitro model for glioblastoma using microfluidics: Generating pseudopalisades on a chip, Cancer Research, 75, No 23: Abstract nr B04.; Ayuso, J. M., An in vitro model for glioblastoma using microfluidics: Generating pseudopalisades on a chip, Cancer Research, 75, 23 (2015) · doi:10.1158/1538-7445.BRAIN15-B04
[74] J. M. Ayuso et al., (2016), Glioblastoma on a microfluidic chip: Generating pseudopalisades and enhancing aggressiveness through thrombotic events, to appear in Neuro-Oncology.; Ayuso, J. M., Glioblastoma on a microfluidic chip: Generating pseudopalisades and enhancing aggressiveness through thrombotic events, to appear in Neuro-Oncology. (2016)
[75] J. Frontiñán et al., (2016), Coenzyme Q10 sensitizes human glioblastoma cells to radiation and temozolomide by inhibiting catalase activity, lactate and glutathione synthesis, preprint.; Frontiñán, J., Coenzyme Q10 sensitizes human glioblastoma cells to radiation and temozolomide by inhibiting catalase activity, lactate and glutathione synthesis, preprint (2016)
[76] P. M. Enriquez-Navas et al., (2016), Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer, Science Translational Medicine, 8, No 327.; Enriquez-Navas, P. M., Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer, Science Translational Medicine, 8, 327 (2016) · doi:10.1126/scitranslmed.aad7842
[77] 2020-01-09 13:24:16 <mixed-citation><ext-link ext-link-type=“uri” xlink.href=“https://clinicaltrials.gov/ct2/show/NCT02415621”>https://clinicaltrials.gov/ct2/show/NCT02415621</ext-link></mixed-citation>; 2020-01-09 13:24:16 Citation within text.
[78] H. L.P. Harpold, E. C. Alvord and K. R. Swanson, (2007), The Evolution of Mathematical Modeling of Glioma Proliferation and Invasion, Journal of Neuropathology & Experimental Neurology, 66, No 1, 1-9.; Harpold, H. L. P.; Alvord, E. C.; Swanson, K. R., The Evolution of Mathematical Modeling of Glioma Proliferation and Invasion, Journal of Neuropathology & Experimental Neurology, 66, 1, 1-9 (2007) · doi:10.1097/nen.0b013e31802d9000
[79] C. H. Wang et al., (2009), Prognostic Significance of Growth Kinetics in Newly Diagnosed Glioblastomas Revealed by Combining Serial Imaging with a Novel Biomathematical Model, Cancer Research, 69, No 23, 9133-9140.; Wang, C. H., Prognostic Significance of Growth Kinetics in Newly Diagnosed Glioblastomas Revealed by Combining Serial Imaging with a Novel Biomathematical Model, Cancer Research, 69, 23, 9133-9140 (2009) · doi:10.1158/0008-5472.CAN-08-3863
[80] K. Leder et al., (2014), Mathematical modeling of PDGF-driven glioblastoma reveals optimized radiation dosing schedules, Cell, 156, No 3, 603-616.; Leder, K., Mathematical modeling of PDGF-driven glioblastoma reveals optimized radiation dosing schedules, Cell, 156, 3, 603-616 (2014) · doi:10.1016/j.cell.2013.12.029
[81] N. L. Albert et al., (2016), Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas, Neuro-Oncology, 18, No 9, 1199-1208.; Albert, N. L., Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas, Neuro-Oncology, 18, 9, 1199-1208 (2016) · doi:10.1093/neuonc/now058
[82] D. R. Santiago-Dieppa et al., (2014), Extracellular vesicles as a platform for ‘liquid biopsy’ in glioblastoma patients, Expert Review of Molecular Diagnostics, 14, No 7, 819-825.; Santiago-Dieppa, D. R., Extracellular vesicles as a platform for ‘liquid biopsy’ in glioblastoma patients, Expert Review of Molecular Diagnostics, 14, 7, 819-825 (2014) · doi:10.1586/14737159.2014.943193
[83] 2020-01-09 13:24:17 <mixed-citation><ext-link ext-link-type=“uri” xlink.href=“http://cordis.europa.eu/project/rcn/110724_en.html”>http://cordis.europa.eu/project/rcn/110724_en.html</ext-link></mixed-citation>; 2020-01-09 13:24:17 Citation within text.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.