×

Numerical methods for the simulation of trapped nonlinear Schrödinger systems. (English) Zbl 1024.65084

Summary: We propose, analyze and compare the efficiency and accuracy of different numerical schemes for the solution of the nonlinear Schrödinger equation with a trapping potential. In particular we study schemes of finite difference, pseudospectral and spectral types for the space discretization together with explicit symplectic, multistep, split-step and standard variable-step integrators to solve the time evolution. All of these schemes are evaluated comparatively and some recommendations based on their accuracy and computational efficiency are made.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
37M15 Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hasegawa, A., Optical Solitons in Fibers (1989), Springer-Verlag: Springer-Verlag Berlin
[2] Dodd, R. K.; Eilbeck, J. C.; Gibbon, J. D.; Morris, H. C., Solitons and Nonlinear Wave Equations (1982), Academic Press: Academic Press New York · Zbl 0496.35001
[3] Davydov, A. S., Solitons in Molecular Systems (1985), Reidel: Reidel Dordrecht · Zbl 0597.35001
[4] Sulem, C.; Sulem, P., The Nonlinear Schrödinger Equation (2000), Springer: Springer Berlin · Zbl 0867.35094
[5] (Vázquez, L.; Streit, L.; Pérez-Garcı́a, V. M., Nonlinear Schrödinger and Klein-Gordon systems: Theory and Applications (1996), World Scientific: World Scientific Singapore)
[6] Dalfovo, F.; Giorgini, S.; Pitaevskii, L. P.; Stringari, S., Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71, 463-512 (1999)
[7] Pérez-Garcı́a, V. M.; Michinel, H.; Herrero, H., Bose-Einstein solitons in highly asymmetric traps, Phys. Rev. A, 57, 3837-3845 (1998)
[8] Busch, T.; Anglin, J. R., Dark-bright solitons in inhomogeneous Bose-Einstein condensates, Phys. Rev. Lett., 87, 010401:1-4 (2001)
[9] Busch, T.; Anglin, J. R., Motion of dark solitons in trapped Bose-Einstein condensates, Phys. Rev. Lett., 84, 2298-2301 (2000)
[10] Burger, S.; Bongs, K.; Dettmer, S.; Ertmer, W.; Sengstock, K.; Sanpera, A.; Shlyapnikov, G. V.; Lewenstein, M., Dark solitons in Bose-Einstein condensates, Phys. Rev. Lett., 83, 5198-5201 (1999)
[11] Kunze, M.; Küpper, T.; Mezentsev, V. K.; Shapiro, E. G.; Turitsyn, S., Nonlinear solitary waves with gaussian tails, Physica D, 128, 273-295 (1999) · Zbl 0935.35152
[12] Delfour, M.; Fortin, M.; Payre, G., Finite difference solutions of a nonlinear Schrödinger equation, J. Comp. Phys., 44, 277-288 (1981) · Zbl 0477.65086
[13] Sanz-Serna, J. M.; Verwer, J. G., Conservative and nonconservative schemes for the solution of the nonlinear Schrödinger equation, IMA J. Numer. Anal., 6, 25-42 (1986) · Zbl 0593.65087
[14] Peranich, L. S., A finite difference scheme for solving a nonlinear Schrödinger equation with a linear damping term, J. Comp. Phys., 68, 501-505 (1987) · Zbl 0626.65139
[15] Zhang, F.; Pérez-Garcı́a, V. M.; Vázquez, L., Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme, Appl. Math. Comput., 71, 164-177 (1995) · Zbl 0832.65136
[16] Tang, Y.; Vázquez, L.; Zhang, F.; Pérez-Garcı́a, V. M., Symplectic methods for the nonlinear Schrödinger equation, Comp. Math. Appl., 32, 73-83 (1996) · Zbl 0858.65124
[17] Tang, Y.; Pérez-Garcı́a, V. M.; Vázquez, L., Symplectic methods for the Ablowitz-Ladik model, Appl. Math. Comput., 82, 17-38 (1997) · Zbl 0870.65115
[18] Karakashian, O.; Makridakis, C., A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method, Math. Comput., 67, 479-499 (1998) · Zbl 0896.65068
[19] Tourigny, Y.; Morris, J., An investigation into the effect of product approximation in the numerical solution of the cubic nonlinear Schrödinger equation, J. Comp. Phys., 76, 103-130 (1988) · Zbl 0641.65090
[20] Herbst, B. M.; Varadi, F.; Ablowitz, M. J., Symplectic methods for the nonlinear Schrödinger equation, Math. Comput. Simul., 37, 353-369 (1994) · Zbl 0812.65118
[21] MacLahan, R., Symplectic integration of Hamiltonian wave equations, Numer. Math., 66, 465-492 (1994)
[22] Pathria, D.; Morris, J. Ll., Pseudo-spectral solution of nonlinear Schrödinger equations, J. Comp. Phys., 87, 108-125 (1990) · Zbl 0691.65090
[23] Weideman, J. A.C.; Herbst, B. M., Split-step methods for the solution of the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 23, 485-507 (1986) · Zbl 0597.76012
[24] Bandrauk, A. D.; Shen, H., High-order split-step exponential methods for solving coupled nonlinear Schrödinger equations, J. Phys. A Math. Gen., 27, 7147-7155 (1994) · Zbl 0842.65084
[25] Herbst, B. M.; Morris, J. Ll.; Mitchell, A. R., Numerical experience with the nonlinear Schrödinger equation, J. Comput. Phys., 60, 282-305 (1985) · Zbl 0589.65084
[26] Taha, T. R.; Ablowitz, M. J., Analytical and numerical aspects of certain nonlinear evolution equations II. Numerical nonlinear Schrödinger equation, J. Comp. Phys., 55, 203-230 (1984) · Zbl 0541.65082
[27] Agrawall, G., Nonlinear Fiber Optics (1995), Academic Press: Academic Press New York
[28] Hairer, S.; Nordsett; Wanner, (Solving Ordinary Differential Equations, vol. 1 (1996), Springer: Springer Berlin)
[29] (Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1964), Dover: Dover New York) · Zbl 0171.38503
[30] Erbe, L.; Tang, M., Uniqueness of positive radial solutions of Δ \(u+f(|x|,u)=0\), Diff. Int. Eq., 11, 725-743 (1995) · Zbl 1131.35334
[31] Wang, Z.-Q., Existence and symmetry of multi-bump solutions for nonlinear Schrödinger equations, J. Diff. Eq., 159, 102-137 (1999) · Zbl 1005.35083
[32] Garcı́a-Ripoll, J. J.; Pérez-Garcı́a, V. M.; Vekslerchik, V., Construction of exact solutions by spatial translations in inhomogeneous nonlinear Schrödinger equations, Phys. Rev. E, 64, 056602-1:6 (2001)
[33] Garcı́a-Ripoll, J. J.; Pérez-Garcı́a, V. M., Minimization of Schrödinger functionals using sobolev gradients: Applications to quantum mechanics and nonlinear optics, SIAM J. Sci. Comp., 23, 1315-1324 (2001)
[34] Ding, P. Z.; Wu, C. X.; Mu, Y. K.; Li, Y. X.; Jin, M. X., Square-preserving and symplectic structure and scheme for quantum system, Chin. Phys. Lett., 13, 245-248 (1996)
[35] Zhou, Z. Y.; Ding, P. Z.; Pan, S. P., Study of a symplectic scheme for the time evolution of an atom in an external field, J. Kor. Phys. Soc., 32, 417-424 (1998)
[36] Liu, X.; Liu, X.; Zhou, Z.; Ding, P.; Pan, S., Numerical solution of one-dimensional time-independent Schrödinger equation by using symplectic schemes, Int. J. Quant. Chem., 79, 343-349 (2000)
[37] Gray, S. K.; Manolopoulos, D. E., Symplectic integrators tailored to the time-dependent Schrödinger equation, J. Chem. Phys., 104, 7099-7112 (1996)
[38] Blanes, S.; Moan, P. C., Practical symplectic partitioned Runge-Kutta and Runge-Kutta-Nystrom methods, J. Comput. Appl. Math., 142, 313-330 (2002) · Zbl 1001.65078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.