×

The three-dimensional transition in the flow around a rotating cylinder. (English) Zbl 1145.76370

Summary: The flow around a circular cylinder rotating with a constant angular velocity, placed in a uniform stream, is investigated by means of two- and three-dimensional direct numerical simulations. The successive changes in the flow pattern are studied as a function of the rotation rate. Suppression of vortex shedding occurs as the rotation rate increases (\(>2\)). A second kind of instabilty appears for higher rotation speed where a series of counter-clockwise vortices is shed in the upper shear layer. Three-dimensional computations are carried out to analyse the three-dimensional transition under the effect of rotation for low rotation rates. The rotation attenuates the secondary instability and increases the critical Reynolds number for the appearance of this instability. The linear and nonlinear parts of the three-dimensional transition have been quantified by means of the amplitude evolution versus time, using the Landau global oscillator model. Proper orthogonal decomposition of the three-dimensional fields allowed identification of the most energetic modes and three-dimensional flow reconstruction involving a reduced number of modes.

MSC:

76E07 Rotation in hydrodynamic stability
76U05 General theory of rotating fluids
76M12 Finite volume methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1017/S0022112092002763 · doi:10.1017/S0022112092002763
[2] DOI: 10.1017/S0022112090003342 · doi:10.1017/S0022112090003342
[3] DOI: 10.1063/1.1562940 · Zbl 1186.76500 · doi:10.1063/1.1562940
[4] DOI: 10.1063/1.1492811 · Zbl 1185.76357 · doi:10.1063/1.1492811
[5] DOI: 10.1017/S0022112087002222 · Zbl 0641.76046 · doi:10.1017/S0022112087002222
[6] DOI: 10.1063/1.870190 · Zbl 1149.76423 · doi:10.1063/1.870190
[7] DOI: 10.1007/BF01585456 · JFM 51.0677.07 · doi:10.1007/BF01585456
[8] DOI: 10.1006/jcph.1993.1140 · Zbl 0777.76072 · doi:10.1006/jcph.1993.1140
[9] DOI: 10.1017/S0022112098001116 · Zbl 0924.76039 · doi:10.1017/S0022112098001116
[10] DOI: 10.1016/0021-9991(90)90227-R · Zbl 0687.76037 · doi:10.1016/0021-9991(90)90227-R
[11] DOI: 10.1137/0103003 · Zbl 0067.35801 · doi:10.1137/0103003
[12] DOI: 10.1063/1.1761178 · Zbl 1180.76043 · doi:10.1063/1.1761178
[13] DOI: 10.1017/S0022112002002938 · Zbl 1163.76442 · doi:10.1017/S0022112002002938
[14] DOI: 10.1017/S0022112003007377 · Zbl 1051.76024 · doi:10.1017/S0022112003007377
[15] DOI: 10.1115/1.1631032 · Zbl 1111.74562 · doi:10.1115/1.1631032
[16] DOI: 10.1017/S002211200100458X · Zbl 1031.76015 · doi:10.1017/S002211200100458X
[17] DOI: 10.1017/S0022112086003014 · Zbl 0596.76047 · doi:10.1017/S0022112086003014
[18] DOI: 10.1146/annurev.fl.25.010193.002543 · doi:10.1146/annurev.fl.25.010193.002543
[19] DOI: 10.1017/S0022112093002368 · doi:10.1017/S0022112093002368
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.