×

Quantum entanglement on a hypersphere. (English) Zbl 1361.81025

Summary: A quantum entanglement’s composite system does not display separable states and a single constituent cannot be fully described without considering the other states. We introduce quantum entanglement on a hypersphere – which is a 4D space undetectable by observers living in a 3D world – derived from signals originating on the surface of an ordinary 3D sphere. From the far-flung branch of algebraic topology, the Borsuk-Ulam theorem states that, when a pair of opposite (antipodal) points on a hypersphere are projected onto the surface of 3D sphere, the projections have matching description. In touch with this theorem, we show that a separable state can be achieved for each of the entangled particles, just by embedding them in a higher dimensional space. We view quantum entanglement as the simultaneous activation of signals in a 3D space mapped into a hypersphere. By showing that the particles are entangled at the 3D level and un-entangled at the 4D hypersphere level, we achieved a composite system in which each local constituent is equipped with a pure state. We anticipate this new view of quantum entanglement leading to what are known as qubit information systems.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P16 Quantum state spaces, operational and probabilistic concepts
14P25 Topology of real algebraic varieties
14F42 Motivic cohomology; motivic homotopy theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Jaeger, G.: Quantum Information an Overview. Springer, New York (2007) · Zbl 1166.81001
[2] Gruska, J.: Quantum entanglement as a new information processing resource. N. Gener. Comput. 21, 279-295 (2003) · Zbl 1101.81313 · doi:10.1007/BF03037304
[3] Hauke, P., Tagliacozzo, L.: Spread of correlations in long-range interacting quantum systems. Phys. Rev. Lett. 111(20), 207202 (2013) · doi:10.1103/PhysRevLett.111.207202
[4] Horodecki, P., Horodecki, M.: Entanglement and thermodynamical analogies. Acta Physica Slovaca 3, 141-56 (1998) · Zbl 0947.81005
[5] Borsuk, K.: Drei saetze ueber die n-dimensionale euklidische sphaere. Fundam. Math. XX, 177-190 (1933) · JFM 59.0560.01
[6] Cohen, M.M.: A Course in Simple Homotopy Theory. Springer, New York (1973) · Zbl 0261.57009 · doi:10.1007/978-1-4684-9372-6
[7] Schroedinger, E.: Discussion of probabilty relations between separated systems. Proc. Camb. Philos. Soc. 31, 555-563 (1935) · JFM 61.1561.03 · doi:10.1017/S0305004100013554
[8] Peters, J.F.: Computional Proximity. Excursions in the Topology of Digital Images, Intelligent Systems (Reference Library 102, Springer, 2015, doi:10.1007/978-3-319-30262-1) · Zbl 1321.26005
[9] Weisstein, E.W.: Antipodal points (http://mathworld.wolfram.com/AntipodalPoints.html. 2015) · JFM 61.1561.03
[10] Henderson, D.W.: Experiencing Geometry. In: Euclidean, Spherical, and Hyperbolic Spaces. 2nd edn. (2001)
[11] Naimpally, S.A., Peters, J.F.: Preservation of continuity. Scientiae Mathematicae Japonicae 76, 305-311 (2013) · Zbl 1321.26005
[12] Willard, S.: General Topology. Dover Pub., Inc., Mineola (1970) · Zbl 0205.26601
[13] Collins, G.P.: The shapes of space. Sci. Am. 291, 94-103 (2004) · doi:10.1038/scientificamerican0704-94
[14] Borsuk, M., Gmurczyk, A.: On homotopy types of 2-dimensional polyhedral. Fundam. Math. 109, 123-142 (1980) · Zbl 0466.57003
[15] Dodson, C.T.J., Parker, P.E.: A User’s guide to algebraic topology. Kluwer, Dordrecht (1997) · Zbl 0886.55001 · doi:10.1007/978-1-4615-6309-9
[16] Leinaas, J.M., et al.: Geometrical aspects of entanglement, arXiv:0605079v1, pp. 1-31 (2006)
[17] Borsuk, M.: Concerning the classification of topological spaces from the standpoint of the theory of retracts. Fundam. Math. XLVI, 177-190 (1958)
[18] Borsuk, M., No article title, Fundamental retracts and extensions of fundamental sequences, 64, 55-85 (1969) · Zbl 0172.48203
[19] Krantz, S.G.: A Guide to Topology. The Mathematical Association of America, Washington (2009) · Zbl 1170.54001
[20] Manetti, M.: Topology. Springer, Heidelberg (2015) · Zbl 1322.54001 · doi:10.1007/978-3-319-16958-3
[21] Peters, J.F.: Topology of Digital Images. Visual Pattern Discovery in Proximity Spaces. Intelligent systems (reference library, 63 Springer, 2014) · Zbl 1295.68010
[22] Weisstein, E.W.: Pathwise-connected (Mathworld, http://mathworld.wolfram.com/Pathwise-Connected.html. 2015)
[23] Zhang, Y., et al.: Simulating quantum state engineering in spontaneous parametric down-conversion using classical light. Opt. Express. 22, 17039-17049 (2014) · doi:10.1364/OE.22.017039
[24] Quesada, N., Sipe, J.E.: Time-ordering effects in the generation of entangled photons using nonlinear optical processes. Phys. Rev. Lett. 114, 093903 (2015) · doi:10.1103/PhysRevLett.114.093903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.