×

zbMATH — the first resource for mathematics

Higher order finite and infinite elements for the solution of Helmholtz problems. (English) Zbl 1157.65482
Summary: In recent years the focus in the field of acoustic finite element computations has shifted to the mid-frequency regime. At higher frequencies, however, the conventional finite elements with linear shape functions fail to provide reliable results due to so-called pollution effects. This motivates the use of higher order shape functions and related \(p\)-FEM concepts. The solution of large systems of equations arising from engineering problems often involves the use of iterative solution procedures, mostly by means of Krylov-subspace methods. The performance of these methods strongly depends on the spectrum of the resulting system matrices, which is affected by the polynomial approximation within the finite element formulation.
The current work shows that finite elements based on Bernstein polynomials yield a favorable spectrum of the system matrix and particularly good performance in combination with commonly employed Krylov solvers. This is shown for interior as well as exterior Helmholtz problems, where an infinite element formulation is employed to account for the sound radiation.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Software:
libMesh; SLEPc
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ihlenburg, F.; Babuška, I., Finite element solution of the Helmholtz equation with high wave number part II: the h-p version of the FEM, SIAM J. numer. anal., 34, 315-358, (1997) · Zbl 0884.65104
[2] Babuška, I.; Sauter, S.A., Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM J. numer. anal., 34, 2392-2423, (1997) · Zbl 0894.65050
[3] Melenk, J.M.; Babuška, I., The partition of unity finite element method: basic theory and applications, Comput. methods appl. mech. engrg., 139, 1-4, 289-314, (1996) · Zbl 0881.65099
[4] Cessenat, O.; Despres, B., Application of an ultra weak variational formulation of elliptic PDES to the two-dimensional Helmholtz problem, SIAM J. numer. anal., 35, 1, 255-299, (1998) · Zbl 0955.65081
[5] Tsukerman, I., A class of difference schemes with flexible local approximation, J. comput. phys., 211, 659-699, (2005) · Zbl 1082.65108
[6] Farhat, C.; Harari, I.; Franca, L.P., The discontinuous enrichment method, Comput. methods appl. mech. engrg., 190, 6455-6479, (2001) · Zbl 1002.76065
[7] Tezaur, R.; Farhat, C., Three-dimensional discontinuous Galerkin elements with Lagrange multipliers for the solution of mid-frequency Helmholtz problems, Int. J. numer. methods engrg., 66, 796-815, (2006) · Zbl 1110.76319
[8] Petersen, S.; Dreyer, D.; von Estorff, O., Assessment of finite and spectral element shape functions for efficient iterative simulations of interior acoustics, Comput. methods appl. mech. engrg., 195, 44-47, 6463-6478, (2006) · Zbl 1119.76043
[9] Givoli, D., High-order local non-reflecting boundary conditions: a review, Wave motion, 39, 4, 319-326, (2004) · Zbl 1163.74356
[10] Grote, M.J.; Keller, J.B., On nonreflecting boundary conditions, J. comput. phys., 122, 2, 231-243, (1995) · Zbl 0841.65099
[11] Guddati, M.N.; Lim, K.-W., Continued fraction absorbing boundary conditions for convex polygonal domains, Int. J. numer. methods engrg., 66, 6, 949-977, (2006) · Zbl 1110.74850
[12] Keller, J.B.; Givoli, D., Exact non-reflecting boundary conditions, J. comput. phys., 82, 1, 172-192, (1989) · Zbl 0671.65094
[13] Bérenger, J.-P., A perfectly matched layer for the absorption of electromagnetic waves, J. comput. phys., 114, 2, 185-200, (1994) · Zbl 0814.65129
[14] Harari, I.; Slavutin, M.; Turkel, E., Studies of FE/PML for exterior problems of time-harmonic elastic waves, Comput. methods appl. mech. engrg., 195, 29-32, 3854-3879, (2006) · Zbl 1119.74048
[15] Shirron, J.J.; Giddings, T.E., A finite element model for acoustic scattering from objects near a fluid – fluid interface, Comput. methods appl. mech. engrg., 195, 1-3, 279-288, (2006) · Zbl 1120.76335
[16] Turkel, E.; Yefet, A., Absorbing PML boundary layers for wave-like equations, Appl. numer. math., 27, 4, 533-557, (1998) · Zbl 0933.35188
[17] Astley, R.J., Infinite element formulations for wave problems: a review of current formulations and an assessment of accuracy, Int. J. numer. methods engrg., 49, 7, 951-976, (2000) · Zbl 1030.76028
[18] Bettess, P., Infinite elements, (1992), Penshaw Press
[19] Dreyer, D.; von Estorff, O., Improved conditioning of infinite elements for exterior acoustics, Int. J. numer. methods engrg., 58, 6, 933-953, (2003) · Zbl 1032.76652
[20] Gerdes, K., A review of infinite element methods for exterior Helmholtz problems, J. comput. acoust., 8, 1, 43-62, (2000) · Zbl 1360.65248
[21] Shirron, J.J.; Dey, S., Acoustic infinite elements for non-separable geometries, Comput. methods appl. mech. engrg., 191, 37-38, 4123-4139, (2002) · Zbl 1039.76036
[22] Harari, I., A survey of finite element methods for time-harmonic acoustics, Comput. methods appl. mech. engrg., 195, 13-16, 1594-1607, (2006) · Zbl 1122.76056
[23] Thompson, L.L., A review of finite-element methods for time-harmonic acoustics, J. acoust. soc. am., 119, 3, 1315-1330, (2006)
[24] Shirron, J.J.; Babuška, I., A comparison of approximate boundary conditions and infinite element methods for exterior Helmholtz problems, Comput. methods appl. mech. engrg., 164, 1-2, 121-139, (1998) · Zbl 0962.76055
[25] Burnett, D.S., A 3-D acoustic infinite element based on a prolate spheroidal multipole expansion, J. acoust. soc. am., 96, 5, 2798-2816, (1994)
[26] Astley, R.J.; Macaulay, G.J.; Coyette, J.-P.; Cremers, L., Three-dimensional wave-envelope elements of variable order for acoustic radiation and scattering. part I. formulation in the frequency domain, J. acoust. soc. am., 103, 1, 49-63, (1998)
[27] Astley, R.J.; Coyette, J.-P., The performance of spheroidal infinite elements, Int. J. numer. methods engrg., 52, 12, 951-976, (2001) · Zbl 1112.76381
[28] Burnett, D.S.; Holford, R.L., An ellipsoidal acoustic infinite element, Comput. methods appl. mech. engrg., 164, 1-2, 49-76, (1998) · Zbl 0962.76045
[29] Burnett, D.S.; Holford, R.L., Prolate and oblate spheroidal acoustic infinite elements, Comput. methods appl. mech. engrg., 158, 1, 117-141, (1998) · Zbl 0954.76042
[30] Astley, R.J.; Coyette, J.-P., Conditioning of infinite element schemes for wave problems, Commun. numer. methods engrg., 17, 1, 31-41, (2001) · Zbl 1090.78528
[31] Astley, R.J.; Hamilton, J.A., Numerical studies of conjugated infinite elements for acoustic radiation, J. comput. acoust., 8, 1, 1-24, (2000) · Zbl 1360.76121
[32] Demkowicz, L.; Gerdes, K., Convergence of the infinite element methods for the Helmholtz equation in separable domains, Numer. math., 79, 1, 11-42, (1998) · Zbl 0898.65067
[33] Gerdes, K., The conjugate vs. the unconjugate infinite element method for the Helmholtz equation in exterior domains, Comput. methods appl. mech. engrg., 152, 1-2, 125-145, (1998) · Zbl 0944.65117
[34] Gerdes, K.; Demkowicz, L., Solution of 3D-Laplace and Helmholtz equation in exterior domains using hp-infinite elements, Comput. methods appl. mech. engrg., 137, 3-4, 239-273, (1996) · Zbl 0881.73126
[35] Ihlenburg, F., On fundamental aspects of exterior approximations with infinite elements, J. comput. acoust., 8, 1, 63-80, (2000) · Zbl 1360.76143
[36] Dreyer, D.; von Estorff, P.S.O., Effectiveness and robustness of improved infinite elements for exterior acoustics, Comput. methods appl. mech. engrg., 195, 3591-3607, (2006) · Zbl 1123.76030
[37] G.W. Zumbusch, Symmetric hierarchical polynomials for the h-p-version of finite elements, Tech. Rep. SC-93-32, Konrad-Zuse-Zentrum, Berlin, 1993.
[38] Freund, R.W., A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, SIAM J. sci. comput., 14, 470-482, (1993) · Zbl 0781.65022
[39] Saad, Y.; Schultz, M.H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. sci. stat. comput., 7, 856-869, (1986) · Zbl 0599.65018
[40] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc Web Page, 2004, <http://www.mcs.anl.gov/petsc>.
[41] Magolu monga Made, M., Incomplete factorization-based preconditionings for solving the Helmholtz equation, Int. J. numer. methods engrg., 50, 1077-1101, (2001) · Zbl 0977.65102
[42] Farhat, C.; Macedo, A.; Lesoinne, M., A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems, Numer. math., 85, 283-308, (2000) · Zbl 0965.65133
[43] Elman, H.C.; Ernst, O.G.; O’Leary, D.P., A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations, SIAM J. sci. comput., 23, 4, 1291-1315, (2001) · Zbl 1004.65134
[44] Szabo, B.A.; Babuška, I., Finite element analysis, (1991), Wiley Chichester
[45] B.S. Kirk, J.W. Peterson, , 2005, <http://libmesh.sourceforge.net>.
[46] Saad, Y., Iterative methods for sparse linear systems, (1996), PWS Publishing Boston · Zbl 1002.65042
[47] Stewart, G., A krylov – schur algorithm for large eigenproblems, SIAM J. matrix anal. appl., 23, 3, 601-614, (2001) · Zbl 1003.65045
[48] V. Hernandez, J. Roman, A. Tomas, V. Vidal, Slepc technical reports, Tech. Rep. STR-7, High Performance Networking and Computing Group (GRyCAP) of Universidad Politecnica de Valencia, 2007.
[49] Biermann, J.; von Estorff, O.; Petersen, S.; Schmidt, H., Computational model to investigate the sound radiation from rolling tires, Tire sci. technol., 35, 3, 209-225, (2007)
[50] Brinkmeier, M.; Nackenhorst, U.; Petersen, S.; von Estorff, O., A numerical model for the simulation of tire rolling noise, J. sound vib., 19, 20-39, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.