×

Basin of attraction of cycles of discretizations of dynamical systems with SRB invariant measures. (English) Zbl 1081.37510

Summary: Computer simulations of dynamical systems are discretizations, where the finite space of machine arithmetic replaces continuum state spaces. So any trajectory of a discretized dynamical system is eventually periodic. Consequently, the dynamics of such computations are essentially determined by the cycles of the discretized map. This paper examines the statistical properties of the event that two trajectories generate the same cycle. Under the assumption that the original system has a Sinai-Ruelle-Bowen invariant measure, the statistics of the computed mapping are shown to be very close to those generated by a class of random graphs. Theoretical properties of this model successfully predict the outcome of computational experiments with the implemented dynamical systems.

MSC:

37C70 Attractors and repellers of smooth dynamical systems and their topological structure
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] P. M. Binder, Limit cycles in a quadratic discrete iteration,Physica D 57(1–2):31–38 (1992). · Zbl 0770.58031 · doi:10.1016/0167-2789(92)90086-3
[2] B. Bollobas,Random Graphs (Academic Press, London, 1985).
[3] Y. D. Burtin, On a simple formula for random mappings and its applications,J. Appl. Prob. 17:403–414 (1980). · Zbl 0436.60015 · doi:10.2307/3213029
[4] J. J. F. Cavanagh,Digital Computer Arithmetic. Design and Implementation (McGraw-Hill, New York, 1984).
[5] P. Diamond, P. Kloeden, and A. Pokrovskii, An invariant masure arising in computer similar of a chaotic dynamical system,J. Nonlinear Sci.,4:59–68 (1994). · Zbl 0789.58044 · doi:10.1007/BF02430627
[6] P. Diamond, P. Kloeden, and A. Pokrovskii, Analysis of an algorithm for computing invariant measures,Nonlinear Analysis TMA 24:323–336 (1994). · Zbl 0826.58022 · doi:10.1016/0362-546X(94)E0062-L
[7] P. Diamond, P. Kloeden, and A. Pokrovskii Interval stochastic matrices and simulation of chaotic dynamics, inChaotic Numerics, P. Kloeden and K. J. Palmer, eds. (American Mathemtical Society, Providence, Rhode Island, 1994), pp. 203–216. · Zbl 0811.58042
[8] P. Diamond, P. Kloeden, A. Pokrovskii, and M. Suzuki, Collapsing effects in numerical simulation of chaotic dynamical systems, inProceedings of 94 Korea Automatic Control Conference. International Session (Taejon, Korea, 1994), pp. 753–757.
[9] P. Diamond, P. Kloeden, A. Pokrovskii, and A. Vladimirov, Collapsing effects in numerical simulation of a class of chaotic dynamical systems and random mappings with a single attracting centre,Physica D 86:559–571 (1995). · Zbl 0878.60094 · doi:10.1016/0167-2789(95)00188-A
[10] G. A. Edgar,Measure, Topology and Fractal Geometry (Springer-Verlag, New York, 1990).
[11] T. Erber, N. F. Darsow, M. J. Frank, and T. M. Rynne, The simulation of random processes on digital computers: Unavoidable order,J. Comput. Phys. 49:394–419 (1983). · Zbl 0512.65004 · doi:10.1016/0021-9991(83)90137-7
[12] T. Erber and D. Gavelek, The iterative evolution of complex systems,Physica A 177:394–400 (1991). · doi:10.1016/0378-4371(91)90178-F
[13] P. M. Gade and Chaitali Basu, The origin of non-chaotic behavior in identically driven systems, preprint from chao-dyn archive, Los Alamos (1995).
[14] D. Gavelek and T. Erber, Shadowing and iterative interpolation for Čebyšev mixing transformations.J. Comput. Phys. 101:25–50 (1992). · Zbl 0756.58037 · doi:10.1016/0021-9991(92)90040-6
[15] I. B. Gerchbakh, Epidemic processes on a random graph: Some preliminary results,J. Appl. Prob. 14:427–438 (1977). · Zbl 0373.92032 · doi:10.2307/3213446
[16] P. Grassberger and I. Procaccia, On the characterization of strange attractors.Phys. Rev. Lett. 50:346–349 (1983). · Zbl 0593.58024 · doi:10.1103/PhysRevLett.50.346
[17] C. Grebogi, E. Ott, and J. A. Yorke, Roundoff-induced periodicity and the correlation dimension of chaotic attractors,Phys. Rev. A 34:3688–3692 (1988). · doi:10.1103/PhysRevA.38.3688
[18] J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer-Verlag, New York, 1983). · Zbl 0515.34001
[19] M. V. Jakobson, Ergodic theory of one-dimensional mappings, inSovremennye Problemy Matematiki. Fundamentalnye Napravlenija, Vol. 2 (AN SSSR, VINITI, Moscow, 1982), pp. 204–232 [in Russian].
[20] A. N. Kolmogorov and V. A. Uspenskii, Algorithms and randomness,Theory Prob. Appl. 32:389–412 (1987). · Zbl 0648.60005 · doi:10.1137/1132060
[21] M. A. Krasnosel’skii and A. V. Pokrovskii,Systems with Hysteresis (Springer-Verlag, Berlin, 1989).
[22] O. E. Lanfod, Some informal remarks on the orbit structure of discrete approximations to chaotic maps, unpublished (1995).
[23] Y. E. Levy, Some remarks about computer studies of dynamical systems,Phys. Lett. 88A:1–3 (1982).
[24] Y. E. Levy, Ergodic properties of the Lozi mappings,Commun. Math. Phys. 93:461–482 (1984). · Zbl 0553.58019 · doi:10.1007/BF01212290
[25] M. Loève,Probability Theory (Van Nostrand, New York, 1963).
[26] W. di Melo and S. van Strien,One-Dimensional Dynamics (Springer-Verlag, Berlin, 1993). · Zbl 0791.58003
[27] D. Ruelle,Elements of Differentiable Dynamics and Bifurcation Theory (Academic Press, Boston, 1989). · Zbl 0684.58001
[28] V. E. Stepanov, Random mappings with a single attracting centre,Theory Prob. Appl. 16:155–161 (1971). · Zbl 0239.60017 · doi:10.1137/1116013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.