zbMATH — the first resource for mathematics

On instability of extremals of potential energy functional. (Russian. English summary) Zbl 07279857
Ufim. Mat. Zh. 10, No. 3, 79-88 (2018); translation in Ufa Math. J. 10, No. 3, 77-85 (2018).
Summary: The paper is devoted to studying the stability and instability of extremals of a potential energy functional. A particular case of this functional is the area type functionals. The potential energy functional is the sum of functionals of area type and of volume density of forces. The potential energy functional is constructed in such way in order to take into consideration the loads on the surface from outside and inside. The stability is defined as the sign-definiteness of the second variation. In this paper we prove the formulae for the first and second variations of the functional. We also prove that the extremal surface can be locally minimal and locally maximal depending on the sign of matrix \(G\). Using the \(G\)-capacity and the second variation of the functional, we obtain the conditions for the instability of the extremals of the potential energy functional. This technique was developed in works by V. M. Miklyukov and V. A. Klyachin. For \(G\)-parabolic extremal surfaces we prove the degeneracy into the plane. This result is an analogue of the theorems by M. do Carmo and C. K. Peng. By an example of \(n\)-dmensional surfaces of revolution we demonstrate the formulae for the first and second variations of the functional. We also prove the criteria of stability and instability for \(n\)-dimensional surfaces of revolution. Similar extremal surfaces arise in applications, in physical problems (e.g. soap films, capillary surfaces, magnetic liquids in a gravitational field with a potential), and the properties of extreme surfaces are used in applied problems (e.g. modeling of awning coverings).
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
30C70 Extremal problems for conformal and quasiconformal mappings, variational methods
31A15 Potentials and capacity, harmonic measure, extremal length and related notions in two dimensions
Full Text: DOI MNR
[1] D. Hoffman, R. Osserman, “The area of generalized gaussian image and the stability of minimal surfaces in \(S^n\) and \(R^n\)”, Math. Ann., 60 (1982), 437-452 · Zbl 0471.53037
[2] J.L.Barbosa, M. do Carmo, “Stability of minimal surfaces and eigevalues of the Laplacian”, Math. Z., 173:1 (1980), 13-28 · Zbl 0417.53033
[3] H.B. Lawson, “Some intrinsic characterizations of minimal surfaces”, J. Analyse Math., 1971:24, 151-161 · Zbl 0251.53003
[4] Pogorelov A. V., “Ob ustoichivosti minimalnykh poverkhnostei”, Dokl. AN SSSR, 260:2 (1981), 293-295 · Zbl 0495.53005
[5] J. Simons, “Minimal varieties in riemannian manifolds”, Ann. of Math., 88:1 (1968), 62-105 · Zbl 0181.49702
[6] Tuzhilin A. A., Fomenko A. T., Elementy geometrii i topologii minimalnykh poverkhnostei, Nauka, M., 1991, 174 pp.
[7] Fomenko A.  T., “O skorosti rosta i naimenshikh ob”emakh globalno minimalnykh poverkhnostei v kobordizmakh”, Trudy seminara po vekt. i tenz. analizu, 21, MGU, M., 1985, 3-12
[8] Finn R., Ravnovesnye kapillyarnye poverkhnosti. Matematicheskaya teoriya, Mir, M., 1989, 312 pp.
[9] Klyachin V. A., “O nekotorykh svoistvakh ustoichivykh i neustoichivykh poverkhnostei predpisannoi srednei krivizny”, Izv. RAN. Ser. matem., 70:4 (2006), 77-90 · Zbl 1147.53008
[10] Klyachin V. A., Miklyukov V. M., “Priznaki neustoichivosti poverkhnostei nulevoi srednei krivizny v iskrivlennykh lorentsevykh proizvedeniyakh”, Matem. sb., 187:11 (1996), 67-88 · Zbl 0879.53041
[11] Klyachin V. A., Medvedeva N. M., “Ob ustoichivosti ekstremalnykh poverkhnostei nekotorykh funktsionalov tipa ploschadi”, Sibirskie elektronnye matematicheskie izvestiya, 4 (2007), 113-132 · Zbl 1132.53302
[12] M. do Carmo, C. K. Peng, “The stable minimal surfaces in \({\rm R}^3\) are planes”, Bull. (New Ser.) Amer. Math. Soc., 1:6 (1979), 903-906 · Zbl 0442.53013
[13] Klyachin V. A., Miklyukov V. M., “Maksimalnye giperpoverkhnosti trubchatogo tipa v prostranstve Minkovskogo”, Izv. AN SSSR. Ser. mat., 55:1 (1991), 206-217
[14] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983, 284 pp.
[15] Poluboyarova N.  M., “Uravneniya ekstremalei funktsionala potentsialnoi energii”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1: Matematika. Fizika, 2016, no. 5(36), 60-72
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.