×

Enhanced FEM-based modeling of brain shift deformation in image-guided neurosurgery. (English) Zbl 1191.92020

Summary: We consider the problem of improving outcomes for neurosurgery patients by enhancing intraoperative navigation and guidance. Current navigation systems do not accurately account for intraoperative brain deformation. We focus on the brain shift deformation that occurs just after the opening of the skull and dura. The heart of our system is a nonrigid registration technique using a biomechanical model. We specifically work on two axes: the representation of the structures in the biomechanical model and the evaluation of the surface landmark displacement fields between intraoperative MR images. Using the modified Hausdorff distance as an image similarity measure, we demonstrate that our approach significantly improves the alignment of the intraoperative images.

MSC:

92C50 Medical applications (general)
92C55 Biomedical imaging and signal processing
92C10 Biomechanics
92C20 Neural biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Nabavi, A.; Black, P. M.; Gering, D. T.; Westin, C. F.; Mehta, V.; Pergolizzi, R. S.; Ferrant, M.; Warfield, S. K.; Hata, N.; Schwartz, R. B.; Wells, W. M.; Kikinis, R.; Jolesz, F. A., Serial intraoperative magnetic resonance imaging of brain shift, Neurosurgery, 48, 4, 787-798 (2001)
[3] Vigneron, L. M.; Duflot, M. P.; Robe, P. A.; Warfield, S. K.; Verly, J. G., 2D XFEM-based modeling of retraction and successive resections for preoperative image update, Computer Aided Surgery, 14 (2009)
[5] Warfield, S. K.; Haker, S. J.; Talos, I.-F.; Kemper, C. A.; Weisenfeld, N.; Mewes, A. U.; Goldberg-Zimring, D.; Zou, K. H.; Westin, C.-F.; Wells, W. M.; Tempany, C. M.; Golby, A.; Black, P. M.; Jolesz, F. A.; Kikinis, R., Capturing intraoperative deformations: research experience at Brigham and Women’s Hospital, Medical Image Analysis, 9, 2, 145-162 (2005)
[6] Clatz, O.; Delingette, H.; Talos, I.-F.; Golby, A. J.; Kikinis, R.; Jolesz, F. A.; Ayache, N.; Warfield, S. K., Robust non-rigid registration to capture brain shift from intra-operative MRI, IEEE Transactions on Medical Imaging, 24, 11, 1417-1427 (2005)
[7] Ferrant, M.; Nabavi, A.; Macq, B.; Kikinis, R.; Warfield, S. K., Serial registration of intra-operative MR images of the brain, Medical Image Analysis, 6, 4, 337-359 (2002)
[9] Wittek, A.; Miller, K.; Kikinis, R.; Warfield, S. K., Patient-specific model of brain deformation: Application to medical image registration, Journal of Biomechanics, 40, 4, 919-929 (2007)
[11] Paulsen, K. D.; Miga, M. I.; Kennedy, F. E.; Hoopens, P. J.; Hartov, A.; Roberts, D. W., A computational model for tracking subsurface tissue deformation during stereotactic neurosurgery, IEEE Transactions on Biomedical Engineering, 46, 2, 213-225 (1999)
[12] Audette, M. A.; Siddiqi, K.; Ferrie, F. P.; Peters, T. M., An integrated range-sensing, segmentation and registration framework for the characterization of intra-surgical brain deformations in image-guided surgery, Computer Vision and Image Understanding, 89, 2-3, 226-251 (2003)
[13] Skrinjar, O.; Nabavi, A.; Duncan, J., Model-driven brain shift compensation, Medical Image Analysis, 6, 4, 361-373 (2002)
[14] Sun, H.; Lunn, K. E.; Farid, H.; Wu, Z.; Roberts, D. W.; Hartov, A.; Paulsen, K. D., Stereopsis-guided brain shift compensation, IEEE Transactions on Medical Imaging, 24, 8, 1039-1052 (2005)
[15] Lunn, K. E.; Paulsen, K. D.; Lynch, D. R.; Roberts, D. W.; Kennedy, F. E.; Hartov, A., Assimilating intraoperative data with brain shift modeling using the adjoint equations, Medical Image Analysis, 9, 3, 281-293 (2005)
[18] Mangin, J.-F.; Frouin, V.; Bloch, I.; Régis, J.; Lp´ez-Krahe, J., From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations, Journal of Mathematical Imaging and Vision, 5, 4, 297-318 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.