×

zbMATH — the first resource for mathematics

Semi-conservative finite volume schemes for conservation laws. (English) Zbl 1432.76179

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35L45 Initial value problems for first-order hyperbolic systems
35L65 Hyperbolic conservation laws
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
76N15 Gas dynamics, general
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] F. Aràndiga, A. Baeza, A. M. Belda, and P. Mulet, Analysis of WENO schemes for full and global accuracy, SIAM J. Numer. Anal., 49 (2011), pp. 893–915. · Zbl 1233.65051
[2] F. Bianco, G. Puppo, and G. Russo, High order central schemes for hyperbolic systems of conservation laws, SIAM J. Sci. Comput., 21 (1999), pp. 294–322. · Zbl 0940.65093
[3] P. Carlini, E. Ferretti, and G. Russo, A weighted essentially nonoscillatory, large time-step scheme for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 23 (2005), pp. 1071–1091. · Zbl 1105.65090
[4] M. Castro and M. Semplice, Third and Fourth Order Well-Balanced Schemes for the Shallow Water Equations Based on the CWENO Reconstruction, , 2018.
[5] M. J. Castro, J. M. Gallardo, and A. Marquina, Approximate Osher-Solomon schemes for hyperbolic systems, Appl. Math. Computation, 272 (2016), pp. 347–368, https://doi.org/10.1016/j.amc.2015.06.104. · Zbl 1410.76325
[6] I. Cravero, G. Puppo, M. Semplice, and G. Visconti, CWENO reconstructions for balance laws, Math. Comp., 87 (2018), pp. 1689–1719. · Zbl 1412.65102
[7] I. Cravero and M. Semplice, On the accuracy of WENO and CWENO reconstructions of third order on nonuniform meshes, J. Sci. Comput., 67 (2016), pp. 1219–1246. · Zbl 1343.65116
[8] C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 3rd ed., Springer, New York, 2010. · Zbl 1196.35001
[9] P. Degond, P.-F. Peyrard, G. Russo, and P. Villedieu, Polynomial upwind schemes for hyperbolic systems, C. R. Acad. Sci. Ser. I Math., 328 (1999), pp. 479–483, https://doi.org/10.1016/S0764-4442(99)80194-3.
[10] E. Godlewski and P. Raviart, Hyperbolic Systems of Conservation Laws, Math. Appl., Société de Mathématiques Appliquées et Industrielles, 1991. · Zbl 0768.35059
[11] E. Godlewski and P. A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Appl. Math. Sci., 118, Springer, New York, 1996.
[12] S. Gottlieb, C. Shu, and E. Tadmor, Strong stability preserving high order time discretization methods, SIAM Rev., 43 (2001), pp. 89–112. · Zbl 0967.65098
[13] E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, Comput. Math. 8, Springer, New York, 1993. · Zbl 0789.65048
[14] E. Harabetian and R. Pego, Nonconservative hybrid shock capturing schemes, J. Comput. Phys., 105 (1993), pp. 1–13. · Zbl 0781.65076
[15] G.-S. Jiang and C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126 (1996), pp. 202–228.
[16] G.-S. Jiang and E. Tadmor, Nonoscillatory central schemes for multidimensional hyperbolic conservation laws, SIAM J. Sci. Comput., 19 (1998), pp. 1892–1917. · Zbl 0914.65095
[17] R. J. Le Veque, Numerical Methods for Conservation Laws, 2nd ed., Lectures in Math. ETH Zürich, Birkhäuser Verlag, Basel, 1992.
[18] R. J. Le Veque, Finite Volume methods for Hyperbolic Problems, Cambridge University Press, Cambridge, NY, 2002.
[19] D. Levy, G. Puppo, and G. Russo, Central WENO schemes for hyperbolic systems of conservation laws, Math. Model. Numer. Anal., 33 (1999), pp. 547–571. · Zbl 0938.65110
[20] D. Levy, G. Puppo, and G. Russo, Compact central WENO schemes for multidimensional conservation laws, SIAM J. Sci. Comput., 22 (2000), pp. 656–672. · Zbl 0967.65089
[21] D. Levy, G. Puppo, and G. Russo, A fourth-order central WENO schemes for multidimensional hyperbolic systems of conservation laws, SIAM J. Sci. Comput., 24 (2002), pp. 480–506. · Zbl 1014.65079
[22] J. Martì and E. Müller, Extension of the piecewise parabolic method to one-dimensional relativistic hydrodynamics, J. Comput. Phys., 123 (1996), pp. 1–14.
[23] J. Martì and E. Müller, Numerical Hydrodynamics in Special Relativity, Living Reviews in Relativity, Max Planck Institute, 2003.
[24] H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87 (1990), pp. 408–463. · Zbl 0697.65068
[25] L. Pareschi, G. Puppo, and G. Russo, Central Runge-Kutta schemes for conservation laws, SIAM J. Sci. Comput., 26 (2005), pp. 979–999. · Zbl 1077.65094
[26] S. Qamar and M. Yousaf, Application of a discontinuous Galerkin finite element method to special relativistic hydrodynamic models, Comput. Math. Appl., 65 (2013), pp. 1220–1232. · Zbl 1319.76064
[27] J. Qiu and C. Shu, On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes, J. Comput. Phys., 183 (2002), pp. 187–209. · Zbl 1018.65106
[28] P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43 (1981), pp. 357–372. · Zbl 0474.65066
[29] M. Semplice, A. Coco, and G. Russo, Adaptive mesh refinement for hyperbolic systems based on third-order compact WENO reconstruction, J. Sci. Comput., 66 (2016), pp. 692–724. · Zbl 1335.65077
[30] J. Shi, C. Hu, and C.-W. Shu, A technique of treating negative weights in WENO schemes, J. Comput. Phys., 175 (2002), pp. 108–127. · Zbl 0992.65094
[31] C.-W. Shu, Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws, Lecture Notes in Math., 1697, Springer, New York, 1998.
[32] C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77 (1988), pp. 438–471.
[33] J. Zhao and H. Tang, Central Runge-Kutta Discontinuous Galerkin Methods for the Special Relativistic Hydrodynamics, , 2016.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.