zbMATH — the first resource for mathematics

Simulation of particle dynamics for rarefied flows: backflow in thruster plumes. (English) Zbl 1408.76453
Summary: A novel model and a new numerical method are presented for the transport of solid particles in rarefied flows. The model is based on a Vlasov type equation where the particles are represented by a distribution function. The rarefied flow is described by a BGK or ES-BGK approach. An accurate method is proposed to solve the particle transport equation in a fully Eulerian framework. Validations in 2D with respect to analytical solutions and a Lagrangian method are presented. The numerical model is then used to explain a peculiar particle dynamics observed in satellite thrusters.

76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
76T15 Dusty-gas two-phase flows
Full Text: DOI
[1] Doisneau, F.; Laurent, F.; Murrone, A.; Dupays, J.; Massot, M., Eulerian multi-fluid models for the simulation of dynamics and coalescence of particles in solid propellant combustion, J. Comput. Phys., 234, C, 230-262, (2013) · Zbl 1284.76288
[2] Dukowicz, John K., A particle-fluid numerical model for liquid sprays, J. Comput. Phys., 35, 2, 229-253, (1980) · Zbl 0437.76051
[3] Harlow, F. H.; Amsden, A. A., Numerical calculation of multiphase fluid flow, J. Comput. Phys., 17, 19-52, (1975) · Zbl 0297.76079
[4] Carrillo, José-Antonio; Goudon, Thierry; Lafitte, Pauline, Simulation of fluid and particles flows: asymptotic preserving schemes for bubbling and flowing regimes, J. Comput. Phys., 227, 16, 7929-7951, (2008) · Zbl 1141.76050
[5] Charles, Frédérique, Modélisation mathématique et étude numérique d’un aérosol. application à la simulation du transport de particules de poussière en cas d’accident de perte de vide dans ITER, (2009), École Normale Supérieure de Cachan - ENS Cachan, (Ph.D. thesis)
[6] Østmo, Svend; Frezzotti, Aldo; Ytrehus, Tor, Kinetic theory study of steady evaporation from a spherical condensed phase containing inert solid particles, Phys. Fluids, 9, 1, 211, (1997)
[7] Ferrari, E.; Pareschi, L., Modelling and numerical methods for the dynamics of impurities in a gas, Internat. J. Numer. Methods Fluids, 57, 6, 693-713, (2006) · Zbl 1152.76052
[8] Dettleff, Georg; Grabe, Martin, Basics of plume impingement analysis for small chemical and cold gas thrusters, (Models and Computational Methods for Rarefied Flows, AVT- 194 RTO AVT/VKI, (2011), Rhode St. Genese Belgium)
[9] Cercignani, C., The Boltzmann equation and its applications, (1988), Springer-Verlag GmbH · Zbl 0646.76001
[10] Bird, G. A., (Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford Engineering Science Series, (1994), Clarendon Press)
[11] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 511-525, (1954) · Zbl 0055.23609
[12] Holway, L. H., Kinetic theory of shock structure using an ellipsoidal distribution function, (De Leeuw, J. H., Rarefied Gas Dynamics, Vol. 1, (1965)), 193+
[13] Bernard-Champmartin, Aude; Braeunig, Jean-Philippe; Fochesato, Christophe; Goudon, Thierry, A semi-Lagrangian approach for dilute non-collisional fluid-particle flows, Commun. Comput. Phys., 19, 03, 801-840, (2016) · Zbl 1388.65074
[14] Andrews, M. J.; O’Rourke, P. J., The multiphase particle-in-cell (MP-PIC) method for dense particulate flows, Int. J. Multiph. Flow, (1996) · Zbl 1135.76348
[15] Snider, D. M.; O’Rourke, P. J.; Andrews, M. J., Sediment flow in inclined vessels calculated using a multiphase particle-in-cell model for dense particle flows, Int. J. Multiph. Flow, (1998) · Zbl 1121.76474
[16] Patankar, N. A.; Joseph, D. D., Modeling and numerical simulation of particulate flows by the eulerian-Lagrangian approach, Int. J. Multiph. Flow, (2001) · Zbl 1137.76709
[17] Desjardins, O.; Fox, R. O.; Villedieu, P., A quadrature-based moment method for dilute fluid-particle flows, J. Comput. Phys., 227, 4, 2514-2539, (2008) · Zbl 1261.76027
[18] Rosenhead, L., The formation of vortices from a surface of discontinuity, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 170-192, (1931) · Zbl 0003.08401
[19] Evans, Martha W.; Harlow, Francis Harvey; Bromberg, Eleazer, The particle-in-cell method for hydrodynamic calculatons. technical report, (1957), Los Alamos Scientific Laboratory
[20] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics—theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375-389, (1977) · Zbl 0421.76032
[21] Lucy, L. B., A numerical approach to the testing of the fission hypothesis, Astron. J., 82, 1013-1024, (1977)
[22] Monaghan, J. J., Smoothed particle hydrodynamics, Rep. Progr. Phys., 68, 8, 1703-1759, (2005)
[23] Cottet, Georges-Henri; Maitre, Emmanuel, A level set method for fluid-structure interactions with immersed surfaces, Math. Models Methods Appl. Sci., 16, 03, 415-438, (2006) · Zbl 1088.74050
[24] Cottet, G. H.; Koumoutsakos, P. D., Vortex methods: theory and practice, (2000), Cambridge University Press
[25] Thomas Beale, J.; Majda, Andrew, Vortex methods. I. convergence in three dimensions, Math. Comp., 39, 159, 1-27, (1982) · Zbl 0488.76024
[26] Koumoutsakos, Petros; Leonard, A., High-resolution simulations of the flow around an impulsively started cylinder using vortex methods, J. Fluid Mech., 296, 1-38, (1995) · Zbl 0849.76061
[27] Cottet, Georges-Henri; Weynans, Lisl, Particle methods revisited: a class of high order finite-difference methods, C. R. Math., 343, 1, 51-56, (2006) · Zbl 1096.65084
[28] Andries, Pierre; Bourgat, Jean-François; Le Tallec, Patrick; Perthame, Benoit, Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases, Comput. Methods Appl. Mech. Engrg., 191, 31, 3369-3390, (2002) · Zbl 1101.76377
[29] Owen, Julia P.; Ryu, William S., The effects of linear and quadratic drag on falling spheres: an undergraduate laboratory, Eur. J. Phys., 26, 6, 1085-1091, (2005)
[30] Laurent Boudin, Benjamin Boutin, Bruno Fornet, Thierry Goudon, Pauline Lafitte, Frédéric Lagoutière, and Benoît Merlet. Fluid-particles flows: a thin spray model with energy exchanges, 2009. · Zbl 1176.76132
[31] Bernard, Florian; Iollo, Angelo; Puppo, Gabriella, Accurate asymptotic preserving boundary conditions for kinetic equations on Cartesian grids, J. Sci. Comput., 65, 735-766, (2015) · Zbl 1330.76091
[32] Ascher, Uri M.; Ruuth, Steven J.; Spiteri, Raymond J., Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25, 2-3, 151-167, (1997) · Zbl 0896.65061
[33] Kennedy, Christopher A.; Carpenter, Mark H., Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44, 1-2, 139-141, (2003) · Zbl 1013.65103
[34] Pareschi, Lorenzo; Russo, Giovanni, Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput., 25, 1, 129-155, (2005) · Zbl 1203.65111
[35] Hairer, Ernst; Lubich, Christian; Roche, Michel, The numerical solution of differential-algebraic systems by Runge-Kutta methods, (1989), Springer Berlin, ID: unige:12339 · Zbl 0683.65050
[36] Pieraccini, S.; Puppo, G., Implicit-explicit schemes for BGK kinetic equations, J. Sci. Comput., 32, 1, 1-28, (2007) · Zbl 1115.76057
[37] Filbet, Francis; Jin, Shi, An asymptotic preserving scheme for the ES-BGK model of the Boltzmann equation, J. Sci. Comput., 46, 2, 204-224, (2010) · Zbl 1433.82022
[38] Alaia, A., A time dependent domain decomposition method for A multi-scale hydrodynamic-kinetic system of equations, (2011), Politecnico di Torino, (Ph.D. thesis)
[39] Krasny, Robert, A study of singularity formation in a vortex sheet by the point-vortex approximation, J. Fluid Mech., 167, 65-93, (1986) · Zbl 0601.76038
[40] Jean-Baptiste Lagaert, Guillaume Balarac, Georges-Henri Cottet, Patrick Bégou, Particle method: an efficient tool for direct numerical simulations of a high Schmidt number passive scalar in turbulent flow, in: Proceedings of the Summer Program 2012, 2012, pp. 167-176.
[41] Strang, Gilbert, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 3, 506-517, (1968) · Zbl 0184.38503
[42] Magni, Adrien; Cottet, Georges-Henri, Accurate, non-oscillatory, remeshing schemes for particle methods, J. Comput. Phys., 231, 1, 152-172, (2012) · Zbl 1403.76167
[43] Cottet, G. H.; Etancelin, J. M.; Perignon, F.; Picard, C., High order semi-Lagrangian particle methods for transport equations: numerical analysis and implementation issues, ESAIM Math. Model. Numer. Anal., 48, 4, 1029-1060, (2014) · Zbl 1310.65134
[44] Bernard, Florian; Iollo, Angelo; Puppo, Gabriella, Simulation of diluted flow regimes in presence of unsteady boundaries, (Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, (2014), Springer), 801-808 · Zbl 1426.76335
[45] Boudet, J. F.; Amarouchene, Y.; Kellay, H., Shock front width and structure in supersonic granular flows, Phys. Rev. Lett., 101, 25, (2008) · Zbl 1182.76368
[46] Einstein, Albert, On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat, Ann. Phys., 17, 549-560, 16, (1905)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.