×

Fuzzy orness measure and new orness axioms. (English) Zbl 1340.03023

Summary: We have modified the axiomatic system of orness measures, originally introduced by A. Kishor et al. [“Orness measure of OWA operators: a new approach”, IEEE Trans. Fuzzy Syst. 22, No. 4, 1039–1045 (2014; doi:10.1109/tfuzz.2013.2282299)], keeping altogether four axioms. By proposing a fuzzy orness measure based on the inner product of lattice operations, we compare our orness measure with Yager’s one which is based on the inner product of arithmetic operations. We prove that fuzzy orness measure satisfies the newly proposed four axioms and propose a method to determine OWA operator with given fuzzy orness degree.

MSC:

03E72 Theory of fuzzy sets, etc.
28E10 Fuzzy measure theory
68T37 Reasoning under uncertainty in the context of artificial intelligence
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5 (1953), 131-295. · Zbl 0679.01011 · doi:10.5802/aif.53
[2] Dujmović, J. J.: LSP method and its use for evaluation of Java IDEs. Int. J. Approx. Reasoning 41 (2006), 3-22. · Zbl 1092.68553 · doi:10.1016/j.ijar.2005.06.006
[3] Dujmović, J. J.: Continuous preference logic for system evaluation. IEEE Trans. Fuzzy Syst. 15 (2007), 6, 1082-1099. · doi:10.1109/tfuzz.2007.902041
[4] Dujmović, J. J.: Andness and orness as a mean of overall importance. IEEE International Conference on Fuzzy Systems, FUZZ 2012, Brisbane 2012, pp. 1-6. · doi:10.1109/fuzz-ieee.2012.6250777
[5] Filev, D., Yager, R. R.: On the issue of obtaining OWA operator weights. Fuzzy Sets and Systems 94 (1998), 157-169. · doi:10.1016/s0165-0114(96)00254-0
[6] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge 2009. · Zbl 1206.68299 · doi:10.1016/j.ins.2010.08.040
[7] Hesamian, G., Taheri, S. M.: Fuzzy empirical distribution function: Properties and application. Kybernetika, 49 (2013), 6, 962-982. · Zbl 1284.93240
[8] Jin, L.: Some properties and representation methods for Ordered Weighted Averaging operators. Fuzzy Sets and Systems 261 (2015), 60-86. · Zbl 1360.68836 · doi:10.1016/j.fss.2014.04.019
[9] Kishor, A., Singh, A. K., Pal, N. R.: Orness measure of OWA operators: a new approach. IEEE Trans. Fuzzy Syst. 22 (2014), 4, 1039-1045. · doi:10.1109/tfuzz.2013.2282299
[10] Kolesárová, A., Mesiar, R., Rückschlossová, T.: Power stable aggregation functions. Fuzzy Sets and Systems 240 (2014), 39-50. · Zbl 1315.68238 · doi:10.1016/j.fss.2013.05.005
[11] Liu, X. W.: On the properties of equidifferent OWA operator. Int. J. Approx. Reasoning 43 (2006), 90-107. · Zbl 1102.68130 · doi:10.1016/j.ijar.2006.02.004
[12] Liu, X. W.: An orness measure for quasi-arithmetic means. IEEE Trans. Fuzzy Syst. 16 (2006), 6, 837-848. · doi:10.1109/tfuzz.2006.879990
[13] Liu, X. W.: Models to determine parameterized ordered weighted averaging operators using optimization criteria. Inf. Sci. 190 (2012), 27-55. · Zbl 06092511 · doi:10.1016/j.ins.2011.12.007
[14] Liu, X. W., Chen, L. H.: On the properties of parametric geometric OWA operator. Int. J. Approx. Reasoning 35 (2004), 163-178. · Zbl 1068.68147 · doi:10.1016/j.ijar.2003.09.001
[15] Liu, X. W., Han, S. L.: Orness and parameterized RIM quantifier aggregation with OWA operators: A summary. Int. J. Approx. Reasoning 48 (2008), 77-97. · Zbl 1184.68516 · doi:10.1016/j.ijar.2007.05.006
[16] Mareš, M., Mesiar, R.: Information in vague data sources. Kybernetika 49 (2013), 3, 433-445. · Zbl 1278.94101
[17] Mesiar, R., Li, J., Pap, E.: Discrete pseudo-integrals. Int. J. Approx. Reasoning 54 (2013), 357-364. · Zbl 1267.28018 · doi:10.1016/j.ijar.2012.07.008
[18] Mesiar, R., Li, J., Pap, E.: Superdecomposition integrals. Fuzzy Sets Syst. 259 (2015), 3-11. · Zbl 1335.28004 · doi:10.1016/j.fss.2014.05.003
[19] Mesiar, R., Stupňanová, A.: Decomposition integrals. Int. J. Approx. Reason. 54 (2013), 1252-1259. · Zbl 1316.28015 · doi:10.1016/j.ijar.2013.02.001
[20] Sugeno, M.: Theory of Fuzzy Integrals and its Applications. PhD. Thesis. Tokyo Institute of Technology 1974.
[21] Torra, V.: The weighted OWA operator. Int. J. Intell. Syst. 12 (1997), 153-166. <a href=”http://dx.doi.org/10.1002/(sici)1098-111x(199702)12:23.0.co;2-p” target=”_blank”>DOI 10.1002/(sici)1098-111x(199702)12:23.0.co;2-p | · Zbl 0867.68089 · doi:10.1002/(SICI)1098-111X(199702)12:2<153::AID-INT3>3.0.CO;2-P
[22] Troiano, L., Yager, R. R.: Recursive and iterative OWA operators. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 13 (2005), 6, 579-599. · Zbl 1085.68172 · doi:10.1142/S0218488505003680
[23] Wallmann, C., Kleiter, G. D.: Degradation in probability logic: When more information leads to less precise conclusions. Kybernetika 50 (2014), 2, 268-283. · Zbl 1296.03018 · doi:10.14736/kyb-2014-2-0268
[24] Xu, Z. S.: An overview of methods for determining OWA weights. Int. J. Intell. Syst. 20 (2005), 8, 843-865. · Zbl 1073.90020 · doi:10.1002/int.20097
[25] Yager, R. R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18 (1) (1988), 183-190. · Zbl 0637.90057 · doi:10.1109/21.87068
[26] Yager, R. R.: Families of OWA operators. Fuzzy Sets and Systems 59 (1993), 125-143. · Zbl 0790.94004 · doi:10.1016/0165-0114(93)90194-M
[27] Yager, R. R.: Quantifier guided aggregation using OWA operators. Int. J. Intell. Syst. 11 (1996), 49-73. <a href=”http://dx.doi.org/10.1002/(sici)1098-111x(199601)11:13.0.co;2-z” target=”_blank”>DOI 10.1002/(sici)1098-111x(199601)11:13.0.co;2-z
[28] Yager, R. R.: Induced aggregation operators. Fuzzy Sets and Systems 137 (2003), 59-69. · Zbl 1056.68146 · doi:10.1016/S0165-0114(02)00432-3
[29] Yager, R. R.: OWA Aggregation Over a Continuous Interval Argument With Applications to Decision Making. IEEE Trans. Syst. Man Cybern. Part B 34 (2004), 1952-1963. · doi:10.1109/tsmcb.2004.831154
[30] Yager, R. R.: Centered OWA operators. Soft Computing 11 (2007), 631-639. · Zbl 1113.68106 · doi:10.1007/s00500-006-0125-z
[31] Yager, R. R.: Time series smoothing and OWA aggregation. IEEE Trans. Fuzzy Syst. 16 (4) (2008), 994-1007. · doi:10.1109/tfuzz.2008.917299
[32] Yager, R. R.: Norms induced from OWA operators. IEEE Trans. Fuzzy Syst. 18 (2010), 1, 57-66. · doi:10.1109/tfuzz.2009.2035812
[33] Yager, R. R.: Probabilistically weighted OWA aggregation. IEEE Trans. Fuzzy Syst. 22 (2014), 46-56. · doi:10.1109/tfuzz.2013.2245899
[34] Yager, R. R., Filev, D. P.: Parameterized and-like and or-like OWA operators. Int. J. Gen. Syst. 22 (1994), 297-316. · doi:10.1080/03081079408935212
[35] Yager, R. R., Filev, D. P.: Operations for granular computing: mixing words and numbers. Fuzzy Systems Proceedings IEEE World Congress on Computational Intelligence, Anchorage 1998, pp. 123-128. · doi:10.1109/fuzzy.1998.687470
[36] Yager, R. R., Filev, D. P.: Induced ordered weighted averaging operators. IEEE Trans. Syst. Man Cybernet. 29 (1999), 141-150. · doi:10.1109/3477.752789
[37] Yager, R. R., Kacprzyk, J., Beliakov, G.: Recent Developments on the Ordered Weighted Averaging Operators: Theory and Practice. Springer-Verlag, Berlin 2011. · doi:10.1007/978-3-642-17910-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.