zbMATH — the first resource for mathematics

Valuation of equity-indexed annuities with regime-switching jump diffusion risk and stochastic mortality risk. (English) Zbl 1274.60215
Summary: This paper extends the model and analysis of S. D. Lin, K. S. Tan and H. Yang [“Pricing annuity guarantees under a regime-switching model”, North Am. Actuar. J. 13, No 3, 316–338 (2009)]. We assume that the financial market follows a regime-switching jump-diffusion model and the mortality satisfies Lévy process. We price the point to point and annual reset EIAs by Esscher transform method under Merton’s assumption and obtain the closed form pricing formulas. Under two cases: with mortality risk and without mortality risk, the effects of the model parameters on the EIAs pricing are illustrated through numerical experiments.

60H30 Applications of stochastic analysis (to PDEs, etc.)
60J75 Jump processes (MSC2010)
91B25 Asset pricing models (MSC2010)
91B30 Risk theory, insurance (MSC2010)
91G20 Derivative securities (option pricing, hedging, etc.)
Full Text: DOI
[1] Aase K, Persson S A. Pricing of unit-linked life insurance policies. Scand Actuar J, 1994, 1: 26–52 · Zbl 0814.62067 · doi:10.1080/03461238.1994.10413928
[2] Biffis E. Affine processes for dynamic mortality and actuarial valuations. Insur Math Econ, 2005, 37: 443–468 · Zbl 1129.91024 · doi:10.1016/j.insmatheco.2005.05.003
[3] Biffis E, Denuit M, Devolder P. Stochastic mortality under measure changes. Cass Business School Research Paper, 2005 · Zbl 1226.91022
[4] Biffis E, Denuit M. Lee Carter goes risk neutral. Cass Business School Research Paper, 2006
[5] Cont R, Tankov P. Financial Modelling with Jump Processes. In: CRC Financial Mathematics Series. Boca Raton, FL: Chapman & Hall, 2004 · Zbl 1052.91043
[6] Dahl M. Stochastic mortality in life insurance: Market reserves and mortality-linked insurance contracts. Insur Math Econ, 2004, 35: 113–136 · Zbl 1075.62095 · doi:10.1016/j.insmatheco.2004.05.003
[7] Dahl M, Moller T. Valuation and hedging of life insurance liabilities with systematic mortality risk. Insur Math Econ, 2006, 39: 193–217 · Zbl 1201.91089 · doi:10.1016/j.insmatheco.2006.02.007
[8] Elliott R J, Chan L L, Siu T K. Option pricing and Esscher transform under regime switching. Ann Finance, 2005, 1 423–432 · Zbl 1233.91270 · doi:10.1007/s10436-005-0013-z
[9] Föllmer H, Sondermann D. Hedging of non-redundant contingent claims. In: Hildenbrand W, Mas-Colell A, eds. Contributions to Mathematical Economics. North-Holland: Elsevier, 1986, 205–223 · Zbl 0663.90006
[10] Frittelli M. The minimal entropy martingale measures and the valuation problem in incomplete markets. Math Financ, 2000, 10: 39–52 · Zbl 1034.91041 · doi:10.1111/1467-9965.00079
[11] Gerber H U, Shiu E S W. Option pricing by Esscher transforms (with discussions). Trans Soc Actuar, 1994, 46: 99–191
[12] Hainaut D, Devolder P. Mortality modelling with Levy processes. Insur Math Econ, 2008, 42: 409–418 · Zbl 1141.91516 · doi:10.1016/j.insmatheco.2007.05.007
[13] Jalen L, Mamon R. Valuation of contingent claims with mortality and interest rate risks. Math Comput Model, 2009, 49: 1893–1904 · Zbl 1171.91349 · doi:10.1016/j.mcm.2008.10.014
[14] Karatzas I, Lehoczky J P, Shreve S E, et al. Martingale and duality methods for utility maximization in an incomplete market. SIAM J Control Optim, 1991, 29: 702–730 · Zbl 0733.93085 · doi:10.1137/0329039
[15] Lin S D, Tan K S Yang H. Pricing annuity guarantees under a regime-switching model (with discussions). North Amer Actuar J, 2009, 13: 316–338 · doi:10.1080/10920277.2009.10597557
[16] Luciano E, Vigna E. Non mean reverting affine processes for stochastic mortality. ICER working paper, 2005
[17] Merton R. Option pricing when underlying stock returns are discontinuous. J Financ Econ, 1976, 3: 125–144 · Zbl 1131.91344 · doi:10.1016/0304-405X(76)90022-2
[18] Miyahara Y. Minimal entropy martingale of jump type price processes in incomplete assets markets. Asia-Pacific Financial Markets, 1999, 6: 97–113 · Zbl 1153.91549 · doi:10.1023/A:1010062625672
[19] Møller T. Risk-minimizing hedging strategies for unit-linked life insurance contracts. Astin Bull, 1998, 28: 17–47 · Zbl 1168.91417 · doi:10.2143/AST.28.1.519077
[20] Møller T. Risk-mimizing hedging strategies for insurance payment processes. Financ Stoch, 2001, 5: 419–446 · Zbl 0983.62076 · doi:10.1007/s007800100041
[21] Qian L, Wang W, Wang R, et al. Valuation of equity-indexed annuity under stochastic mortality and interest rate. Insur Math Econ, 2010, 47: 123–129 · Zbl 1231.91446 · doi:10.1016/j.insmatheco.2010.06.005
[22] Schrager D F. Affine stochastic mortality. Insur Math Econ, 2006, 38: 81–97 · Zbl 1103.60063 · doi:10.1016/j.insmatheco.2005.06.013
[23] Schweizer M. Option hedging for semimartingales. Stoch Proc Appl, 1991, 37: 339–363 · Zbl 0735.90028 · doi:10.1016/0304-4149(91)90053-F
[24] Siu T K, Yang H, Lau J W. Pricing currency options under two-factor Markov-modulated stochastic volatility models. Insur Math Econ, 2008, 43, 295–302 · Zbl 1152.91550 · doi:10.1016/j.insmatheco.2008.05.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.