×

A reliable analysis of oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. (English) Zbl 1330.92037

Summary: In this paper, we investigate the diffusion of oxygen in a spherical cell including nonlinear uptake kinetics. The Lane-Emden boundary value problem with Michaelis-Menten kinetics is used to model the dimensionless oxygen concentration in our analysis. We first convert the Lane-Emden equation to the equivalent Volterra integral form that incorporates the boundary condition at the cell’s center, but which still leaves one unknown constant of integration, as an intermediate step. Next we evaluate the Volterra integral form of the concentration and its flux at the cell membrane and substitute them into the remaining boundary condition to determine the unknown constant of integration by appropriate algebraic manipulations. Upon substitution we have converted the equivalent Volterra integral form to the equivalent Fredholm-Volterra integral form, and use the Duan-Rach modified recursion scheme to effectively decompose the unknown constant of integration by formula. The Adomian decomposition method is then applied to solve the equivalent nonlinear Fredholm-Volterra integral representation of the Lane-Emden model for the concentration of oxygen within the spherical cell. Our approach shows enhancements over existing techniques.

MSC:

92C35 Physiological flow
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
92C37 Cell biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G.   Adomian , Nonlinear Stochastic Operator Equations ( Academic , Orlando, FL , 1986 ) . · Zbl 0609.60072
[2] G.   Adomian , Solving Frontier Problems of Physics: The Decomposition Method ( Kluwer Academic , Dordrecht , 1994 ) . · Zbl 0802.65122
[3] G. Adomian and R. Rach, J. Math. Anal. Appl. 91, 39 (1983), DOI: 10.1016/0022-247X(83)90090-2.
[4] G. Adomian and R. Rach, J. Math. Anal. Appl. 91, 229 (1983), DOI: 10.1016/0022-247X(83)90101-4.
[5] J. S. Duan, Appl. Math. Comput. 216, 1235 (2010), DOI: 10.1016/j.amc.2010.02.015.
[6] J. S. Duan, Appl. Math. Comput. 217, 2456 (2010), DOI: 10.1016/j.amc.2010.07.046.
[7] J. S. Duan, Appl. Math. Comput. 217, 6337 (2011), DOI: 10.1016/j.amc.2011.01.007.
[8] J. S. Duan and R. Rach, Appl. Math. Comput. 218, 4090 (2011), DOI: 10.1016/j.amc.2011.09.037.
[9] J. S. Duan, Commun. Frac. Calc. 3(2), 73 (2012).
[10] J. S. Duan, R. Rach and A. M. Wazwaz, Int. J. Nonlinear Mech. 49, 159 (2013), DOI: 10.1016/j.ijnonlinmec.2012.10.003.
[11] J. S. Duan, Appl. Math. Model. 37, 8687 (2013), DOI: 10.1016/j.apm.2013.02.002.
[12] P. Hiltmann and P. Lory, Bull. Math. Biol. 45(5), 661 (1983), DOI: 10.1007/BF02460043.
[13] S. H. Lin, J. Theor. Biol. 60, 449 (1976), DOI: 10.1016/0022-5193(76)90071-0.
[14] D. L. S. McElwain, J. Theor. Biol. 71, 255 (1978), DOI: 10.1016/0022-5193(78)90270-9.
[15] R. Rach, J. Math. Anal. Appl. 102, 415 (1984), DOI: 10.1016/0022-247X(84)90181-1.
[16] R. Rach, Kybernetes 37, 910 (2008), DOI: 10.1108/03684920810884342.
[17] R. Rach, Kybernetes 41, 1087 (2012).
[18] R. Rach, J. S. Duan and A. M. Wazwaz, J. Math. Chem. 52, 255 (2014), DOI: 10.1007/s10910-013-0260-6.
[19] M. J. Simpson and A. J. Ellery, Appl. Math. Model. 36, 3329 (2012), DOI: 10.1016/j.apm.2011.09.071.
[20] A. M.   Wazwaz , A First Course in Integral Equations ( World Scientific , Singapore , 1997 ) . · Zbl 0924.45001
[21] A. M.   Wazwaz , Partial Differential Equations and Solitary Waves Theory ( HEP and Springer , Beijing and Berlin , 2009 ) . · Zbl 1175.35001
[22] A. M. Wazwaz, Commun. Nonlinear Sci. Numer. Simulat. 16, 3881 (2011), DOI: 10.1016/j.cnsns.2011.02.026.
[23] A. M.   Wazwaz , Linear and Nonlinear Integral Equations: Methods and Applications ( HEP and Springer , Beijing and Berlin , 2011 ) . · Zbl 1227.45002
[24] A. M. Wazwaz and R. Rach, Kybernetes 40, 1305 (2011), DOI: 10.1108/03684921111169404.
[25] A. M. Wazwaz, R. Rach and J. S. Duan, Appl. Math. Comput. 219, 5004 (2013), DOI: 10.1016/j.amc.2012.11.012.
[26] A. M. Wazwaz, R. Rach and J. S. Duan, Math. Models Methods Appl. Sci. 37, 10 (2014), DOI: 10.1002/mma.2776.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.