×

Universal properties of the transition from quasi-periodicity to chaos in dissipative systems. (English) Zbl 0538.58025

Summary: An exact renormalization group transformation is developed for dissipative systems which describes how the transition to chaos may occur in a continuous and universal manner if the frequency ratio in the quasi- periodic regime is held at a fixed irrational value. Our approach is a natural extension of K.A.M. theory to strong coupling. Most of our analysis is for analytic circle maps. We have found a strong coupling fixed point where invertibility is lost, which describes the universal features of the transition to chaos. We find numerically that any two such critical maps with the same winding number are \(C^ 1\) conjugate. It follows that the low frequency peaks in an experimental spectrum are universal and we determine how their envelope scales with frequency. When the winding number has a periodic continued fraction, our renormalization transform has a fixed point and spectra are self similar in addition. For a set of non-periodic winding numbers with full measure our renormalization transformation yields an ergodic trajectory in a sub- space of all critical maps. Physically one finds singular and universal spectra that do not scale.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Feigenbaum, M. J., J. Stat. Phys., 21, 669 (1979)
[2] Libchaber, A.; Maurer, J., (Riste, T., Nonlinear Phenomena at Phase Transitions and Instabilities (1981), Plenum: Plenum New York)
[3] Hirsch, M.; Pugh, C. C.; Shub, M., Invariant Manifolds, (Springer Lecture Notes #583 (1977), Springer: Springer Berlin) · Zbl 0355.58009
[4] Arnold, V. I., Translations American Mathematical Society, 46, 213 (1965), Second Series
[5] Bogoliubov, N. N.; Mitropolski, J. A., Methods of Accelerated Convergence in Nonlinear Mechanics (1976), Springer: Springer Berlin
[6] Moser, J., Stable and Random Motions in Dynamical Systems (1973), Princeton Univ. Press: Princeton Univ. Press Princeton
[7] Herman, M. R., Sur la Conjugaisons Differentiable des Diffeomorphismes du Cercle à des rotations, Publ. I.H.E.S., 49, 5 (1979)
[8] Herman, M. R., Geometry and Topology, (Palis, J.; do Carmo, M., Lecture Notes in Mathematics, 597 (1977), Springer: Springer Berlin), 271
[9] Rand, D.; Ostlund, S.; Sethna, J.; Siggia, E. D., Phys. Rev. Lett., 49, 132 (1982)
[10] Shenker, S. J., Physica, 5D, 405 (1982)
[11] Feigenbaum, M. J.; Kadanoff, L. P.; Shenker, S. J., Physica, 5D, 370 (1982)
[12] Denjoy, A., J. Math. Pures Appl., 9, 333 (1932)
[13] Greene, J. M., J. Math. Phys., 20, 1183 (1979)
[14] Nauenberg, M., NSF-ITP-82-76 (1982), Santa Barbara preprint
[15] L. Jonker and D.A. Rand, Comm. Math. Phys. (to appear).; L. Jonker and D.A. Rand, Comm. Math. Phys. (to appear).
[16] Collet, P.; Eckmann, J. P., Iterated Maps on the Interval as Dynamical Systems (1980), Birkhäuser: Birkhäuser Boston · Zbl 0455.58024
[17] Lanford, O., Bull. Amer. Math. Soc., 6, 427 (1982)
[18] Topology, 21, 125 (1983)
[19] R. McKay, private communication.; R. McKay, private communication.
[20] Billingsley, P., Ergodic Theory and Information (1965), Wiley: Wiley New York · Zbl 0141.16702
[21] Ruelle, D., Ergodic Theory of Differentiable Dynamical Systems, Publ. Math. I.H.E.S., 50, 27 (1979) · Zbl 0426.58014
[22] Collet, P.; Eckmann, J. P.; Koch, H., J. Stat. Phys., 25, 1 (1981)
[23] Rand, D., Arch. Rat. Mech. Anal., 79, 1 (1982)
[24] Ruelle, D.; Takens, F., Comm. Math. Phys., 20, 167 (1971) · Zbl 0227.76084
[25] Escande, D. F.; Doveil, F., J. Stat. Phys., 26, 257 (1981)
[26] Shenker, S. J.; Kadanoff, L. P., J. Stat. Phys., 27, 631 (1982)
[27] B. Simon, Adv. Appl. Math. (to appear).; B. Simon, Adv. Appl. Math. (to appear).
[28] Hofstadter, D. R., Phys. Rev. B, 14, 2239 (1976)
[29] Feigenbaum, M. J.; Hasslacher, B., Phys. Rev. Lett., 49, 605 (1982)
[30] N. Manton and M. Nauenberg, Santa Barbara preprint Comm. Math. Phys. (to appear).; N. Manton and M. Nauenberg, Santa Barbara preprint Comm. Math. Phys. (to appear).
[31] Aronson, D. G.; Chory, M. A.; Hall, G. R.; McGehee, R. P., Comm. Math. Phys., 83, 303 (1982), (see in particular p. 341, fig. 9.1)
[32] S. Newhouse, J. Palis and F. Takens, preprint (1980) (see particularly section 3C); S. Newhouse, J. Palis and F. Takens, preprint (1980) (see particularly section 3C)
[33] Newhouse, S., The Abundance of Wild Hyperbolid Sets and Non-smooth Stable Sets, Publ. Math. I.H.E.S. (Paris), 50, 101 (1979) · Zbl 0445.58022
[34] Hénon, M., Comm. Math. Phys., 50, 69 (1976)
[35] Block, L.; Franke, J., Invent. Math., 22, 69 (1973)
[36] Ito, R., (Math. Proc. Camb. Phil. Soc., 89 (1980)), 107
[37] Jacobson, M., Math. U.S.S.R. Sbornik, 14, 161 (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.