×

On the semicontinuity of the \(\mod 2\) spectrum of hypersurface singularities. (English) Zbl 1318.14005

Using Seifert forms of high–dimensional non–spherical links, the Levine–Tristram signatures and the generalized Murasugi-Kawauchi inequality the semicontinuity of the \(\mod 2\) spectrums of local isolated hypersurface singularities in \(\mathbb{C}^{n+1}\) is proved. This extends results of M. Borodzik and A. Némethi [J. Lond. Math. Soc., II. Ser. 86, No. 1, 87–110 (2012; Zbl 1247.32027)]. The main message is that the semicontinuity of the \(\mod 2\) Hodge Spectrum is topological in nature.

MSC:

14B05 Singularities in algebraic geometry
32S25 Complex surface and hypersurface singularities

Citations:

Zbl 1247.32027
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] V. Arnol\(^{\prime}\)d, On some problems in singularity theory, Geometry and analysis, Indian Acad. Sci., Bangalore, 1980, pp. 1 – 9.
[2] V. I. Arnol\(^{\prime}\)d, S. M. Guseĭn-Zade, and A. N. Varchenko, Singularities of differentiable maps. Vol. II, Monographs in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1988. Monodromy and asymptotics of integrals; Translated from the Russian by Hugh Porteous; Translation revised by the authors and James Montaldi.
[3] Vincent Blanlœil and Françoise Michel, A theory of cobordism for non-spherical links, Comment. Math. Helv. 72 (1997), no. 1, 30 – 51. · Zbl 0893.57023 · doi:10.1007/PL00000365
[4] http://en.wikipedia.org/wiki/Boleadoras
[5] Maciej Borodzik, Morse theory for plane algebraic curves, J. Topol. 5 (2012), no. 2, 341 – 365. · Zbl 1251.57004 · doi:10.1112/jtopol/jts006
[6] Maciej Borodzik and András Némethi, Spectrum of plane curves via knot theory, J. Lond. Math. Soc. (2) 86 (2012), no. 1, 87 – 110. · Zbl 1247.32027 · doi:10.1112/jlms/jdr078
[7] Maciej Borodzik and András Némethi, Hodge-type structures as link invariants, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 1, 269 – 301 (English, with English and French summaries). · Zbl 1275.57018 · doi:10.5802/aif.2761
[8] M. Borodzik and A. Némethi, The Hodge spectrum of analytic germs on isolated surface singularities, J. Math. Pures Appl., 2014, DOI 10.1016/j.matpur.2014.10.007 · Zbl 1315.32007
[9] M. Borodzik, A. Némethi, and A. Ranicki, Codimension 2 embeddings, algebraic surgery and Seifert forms, preprint, arxiv:1211.5964
[10] Alexandru Dimca, Monodromy and Hodge theory of regular functions, New developments in singularity theory (Cambridge, 2000) NATO Sci. Ser. II Math. Phys. Chem., vol. 21, Kluwer Acad. Publ., Dordrecht, 2001, pp. 257 – 278. · Zbl 0993.32017
[11] A. Dimca and A. Némethi, Thom-Sebastiani construction and monodromy of polynomials, Tr. Mat. Inst. Steklova 238 (2002), no. Monodromiya v Zadachakh Algebr. Geom. i Differ. Uravn., 106 – 123; English transl., Proc. Steklov Inst. Math. 3(238) (2002), 97 – 114. · Zbl 1042.32012
[12] R. García López and A. Némethi, On the monodromy at infinity of a polynomial map, Compositio Math. 100 (1996), no. 2, 205 – 231. · Zbl 0855.32016
[13] R. García López and A. Némethi, Hodge numbers attached to a polynomial map, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 5, 1547 – 1579 (English, with English and French summaries). · Zbl 0944.32029
[14] Dieter Erle, Quadratische Formen als Invarianten von Einbettungen der Kodimension 2, Topology 8 (1969), 99 – 114 (German). · Zbl 0157.30901 · doi:10.1016/0040-9383(69)90002-0
[15] Akio Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel, 1996. Translated and revised from the 1990 Japanese original by the author. · Zbl 0861.57001
[16] Michel A. Kervaire, Knot cobordism in codimension two, Manifolds – Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in Mathematics, Vol. 197, Springer, Berlin, 1971, pp. 83 – 105.
[17] Patrick W. Keef, On the \?-equivalence of some general sets of matrices, Rocky Mountain J. Math. 13 (1983), no. 3, 541 – 551. · Zbl 0533.57011 · doi:10.1216/RMJ-1983-13-3-541
[18] John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. · Zbl 0184.48405
[19] Kunio Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965), 387 – 422. · Zbl 0137.17903
[20] András Némethi, The real Seifert form and the spectral pairs of isolated hypersurface singularities, Compositio Math. 98 (1995), no. 1, 23 – 41. · Zbl 0851.14015
[21] A. Némethi, Some topological invariants of isolated hypersurface singularities, Low dimensional topology (Eger, 1996/Budapest, 1998) Bolyai Soc. Math. Stud., vol. 8, János Bolyai Math. Soc., Budapest, 1999, pp. 353 – 413. · Zbl 0958.32029
[22] András Némethi, On the Seifert form at infinity associated with polynomial maps, J. Math. Soc. Japan 51 (1999), no. 1, 63 – 70. · Zbl 0933.32042 · doi:10.2969/jmsj/05110063
[23] A. Némethi and C. Sabbah, Semicontinuity of the spectrum at infinity, Abh. Math. Sem. Univ. Hamburg 69 (1999), 25 – 35. · Zbl 0973.32014 · doi:10.1007/BF02940860
[24] András Némethi and Alexandru Zaharia, On the bifurcation set of a polynomial function and Newton boundary, Publ. Res. Inst. Math. Sci. 26 (1990), no. 4, 681 – 689. · Zbl 0736.32024 · doi:10.2977/prims/1195170853
[25] András Némethi and Alexandru Zaharia, Milnor fibration at infinity, Indag. Math. (N.S.) 3 (1992), no. 3, 323 – 335. · Zbl 0806.57021 · doi:10.1016/0019-3577(92)90039-N
[26] Walter D. Neumann, Complex algebraic plane curves via their links at infinity, Invent. Math. 98 (1989), no. 3, 445 – 489. · Zbl 0734.57011 · doi:10.1007/BF01393832
[27] Walter D. Neumann, Irregular links at infinity of complex affine plane curves, Quart. J. Math. Oxford Ser. (2) 50 (1999), no. 199, 301 – 320. · Zbl 0958.32030 · doi:10.1093/qjmath/50.199.301
[28] Claude Sabbah, Hypergeometric period for a tame polynomial, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 7, 603 – 608 (English, with English and French summaries). · Zbl 0967.32028 · doi:10.1016/S0764-4442(99)80254-7
[29] J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976) Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 525 – 563. · Zbl 0373.14007
[30] J. H. M. Steenbrink, Semicontinuity of the singularity spectrum, Invent. Math. 79 (1985), no. 3, 557 – 565. · Zbl 0568.14021 · doi:10.1007/BF01388523
[31] A. N. Varchenko, Semicontinuity of the spectrum and an upper bound for the number of singular points of the projective hypersurface, Dokl. Akad. Nauk SSSR 270 (1983), no. 6, 1294 – 1297 (Russian).
[32] A. N. Varchenko, On change of discrete invariants of critical points of functions under deformation, Uspehi Mat. Nauk. 5 (1983), 126-127.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.