×

Recovering the source term in a linear diffusion problem by the method of fundamental solutions. (English) Zbl 1159.65354

Summary: This work considers the detection of the spatial source term distribution in a multidimensional linear diffusion problem with constant (and known) thermal conductivity. This work can be physically associated with the detection of non-homogeneities in a material that are inclusion sources in a heat conduction problem. The uniqueness of the inverse problem is discussed in terms of classes of identifiable sources. Numerically, we propose to solve these inverse source problems using fundamental solution-based methods, namely an extension of the method of fundamental solutions to domain problems. Several examples are presented and the numerical reconstructions are discussed.

MSC:

65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
35R30 Inverse problems for PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
80A23 Inverse problems in thermodynamics and heat transfer
80M25 Other numerical methods (thermodynamics) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Isakov V, Applied Mathematical Sciences 127 (1998)
[2] Colaço MJ, Proceeding of the International Mechanical Engineering Congress and Exposition (2003)
[3] DOI: 10.1088/0266-5611/14/4/008 · Zbl 0916.35135 · doi:10.1088/0266-5611/14/4/008
[4] DOI: 10.1088/0266-5611/16/3/308 · Zbl 0963.35194 · doi:10.1088/0266-5611/16/3/308
[5] Novikov P, Dokl. Akad. Nauk 18 pp 165– (1938)
[6] DOI: 10.1016/0041-5553(64)90006-0 · Zbl 0154.17604 · doi:10.1016/0041-5553(64)90006-0
[7] DOI: 10.1023/A:1018981221740 · Zbl 0922.65074 · doi:10.1023/A:1018981221740
[8] DOI: 10.1137/0722040 · Zbl 0579.65121 · doi:10.1137/0722040
[9] Colaço MJ, Proceedings of the 11th Brazillian Congress of Thermal Sciences and Engineering – ENCIT 2006 (2006)
[10] DOI: 10.1007/s10444-004-1833-5 · Zbl 1070.65119 · doi:10.1007/s10444-004-1833-5
[11] DOI: 10.1016/j.enganabound.2004.09.008 · Zbl 1182.76924 · doi:10.1016/j.enganabound.2004.09.008
[12] Colaço MJ, CIT06-0732, Proceeding of the 11th Brazilian Congress on Thermal Science and Engineering (2006)
[13] Evans LC, Graduate Studies in Mathematics 9 (1998)
[14] Adams RA, Sobolev Spaces (1975)
[15] Alifanov OM, Inverse Heat Transfer Problems (1994)
[16] Ozisik MN, Inverse Heat Transfer (2000)
[17] DOI: 10.1088/0266-5611/12/3/006 · Zbl 0858.35134 · doi:10.1088/0266-5611/12/3/006
[18] Roberty NC, Proceedings of the Inverse Problems, Design and Optimization Symposium pp 592– (2007)
[19] DOI: 10.1002/nme.1826 · Zbl 1194.80101 · doi:10.1002/nme.1826
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.