×

The Schur index and Moody’s theorem. (English) Zbl 0801.16014

The Schur index of a central simple algebra \(A\) over a field \(F\) is the degree of the division algebra which is Brauer-equivalent to \(A\). The purpose of this paper is to prove formulas describing how the Schur index of a central simple algebra is reduced when scalars are extended to the function field of certain varieties of ideals in central simple algebras (i.e. (generalized) Brauer-Severi varieties) and (Weil) transfers of such varieties. Index reduction formulas were first proven by A. Schofield and M. Van den Bergh [Trans. Am. Math. Soc. 333, No. 2, 729-739 (1992; Zbl 0778.12004)] for function fields of Brauer-Severi varieties and by A. Blanchet [Commun. Algebra 19, No. 1, 97-118 (1991; Zbl 0717.16014)]. In the present paper, a clever presentation of the relevant function fields (up to stable isomorphism) is given in terms of twisted group algebras, which allows the author to derive the various index reduction formulas from Moody’s induction theorem for \(G_ 0\) of certain infinite groups.

MSC:

16K20 Finite-dimensional division rings
16S35 Twisted and skew group rings, crossed products
12E15 Skew fields, division rings
16E20 Grothendieck groups, \(K\)-theory, etc.
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albert, A. A.:Structure of Algebras, AMS Coll Publ. 24, American Mathematical Society, Providence, RI, 1961. · Zbl 0109.12401
[2] Amitsur, S. A.: Generic splitting fields of central simple algebras,Ann. of Math. 62 (1955), 8-43. · Zbl 0066.28604 · doi:10.2307/2007098
[3] Artin, M.: Brauer Severi varieties, in van Oystaeyen, F. and Vershoren, A. (eds),Brauer Groups in Ring Theory and Algebraic Geometry, Lecture Notes in Math 917, Springer-Verlag, Berlin, Heidelberg, New York, 1982. · Zbl 0536.14006
[4] Blanchet, A.: Function fields of generalized Brauer-Severi varieties,Comm. Algebra 19 (1991), 97-188. · Zbl 0717.16014 · doi:10.1080/00927879108824131
[5] Brown, K.:Cohomology of Groups, Springer-Verlag, New York, Heidelberg, Berlin, 1982. · Zbl 0584.20036
[6] Colliot-Th?l?ne, J.-L. and Sansuc, J.-J.: LaR-?quivalence sur les tores,Ann. Sci. Ecole Norm. Sup. (4) 10 (1977), 175-230.
[7] DeMeyer, F. and Ingraham, E.:Separable Algebras over Commutative Rings, Lecture Notes in Math 181, Springer-Verlag, Berlin, Heidelberg, New York. · Zbl 0215.36602
[8] Draxl, P. K.:Skew Fields, London Math. Soc. Lecture Note Ser. 81, Cambridge University Press, London, 1983. · Zbl 0498.16015
[9] Fein, B., Saltman, D. J., and Schacher, M.: Embedding problems for finite dimensional division algebras, Preprint. · Zbl 0812.16024
[10] Formanek, E.: The center of the ring of 3 ? 3 generic matrices,Linear and Multilinear Algebra 7 (1979), 203-212. · Zbl 0419.16010 · doi:10.1080/03081087908817278
[11] Jacobson, N.:P. I. Algebras, Springer-Verlag, Berlin, Heidelberg, New York, 1975. · Zbl 0326.16013
[12] Lenstra, H. W.: Rational functions invariant under a finite abelian group,Invent. Math. 25 (1974). · Zbl 0292.20010
[13] Levine, M., Srinivas, V., and Weyman, J.:K-theory of twisted GrassmaniansK-Theory 3 (1989), 99-121. · Zbl 0705.14007 · doi:10.1007/BF00533374
[14] Merkurjev, A. S.: Simple algebras and quadratic forms,Izv. Akad. Nauk. SSSR, Ser. Mat. 55 (1991), 218-224. · Zbl 0733.12008
[15] Minac, J. and Wadsworth, A.: u-Invariants for algebraic extensions, Preprint in preparation.
[16] Moody, J. A.: A Brauer induction theorem forG 0 of certain infinite groups,J. Algebra, to appear.
[17] Quillen, D.: Higher AlgebraicK-Theory I, appears inAlgebraic K-Theory 1, Higher K-Theories, Lecture Notes in Math 341, Springer-Verlag, Berlin, 1973. · Zbl 0292.18004
[18] Passman, D.:Infinite Crossed Products, Academic Press, Boston, 1989. · Zbl 0662.16001
[19] Roquette, P.: On the Galois cohomology of the projective linear group and its applications to the construction of generic splitting fields of algebras,Math. Ann. 150, (1963), 411-439. · Zbl 0114.02206 · doi:10.1007/BF01357435
[20] Roquette, P.: Isomorphisms of generic splitting fields of simple algebras,J. Reine Angew. Math. 214/215 (1964), 207-226. · Zbl 0219.16023 · doi:10.1515/crll.1964.214-215.207
[21] Saltman, D. J.: The Schur index and transfers of Brauer-Severi Varieties, Preprint.
[22] Saltman, D. J.: A note on generic division algebras,Contemp. Math. 130 (1992). · Zbl 0772.16008
[23] Saltman, D. J.: The Brauer group and the center of generic matrices,J. Algebra 97 (1985), 53-67. · Zbl 0586.13005 · doi:10.1016/0021-8693(85)90073-0
[24] Schofield, A. and Van den Bergh, M.: The index of a Brauer class on a Brauer-Severi variety,Trans. Amer. Math. Soc. 333 (1992), 729-740. · Zbl 0778.12004 · doi:10.2307/2154058
[25] Swan, R. G.:K-theory of quadric hypersurfaces,Ann. Math. 121 (1985), 113-153. · Zbl 0601.14009 · doi:10.2307/1971371
[26] Van den Bergh, M.: Algebraic subfields and splitting fields of division algebras over function fields, PhD thesis, University of Antwerp, 1985. · Zbl 0596.12012
[27] Van der Waerden, B. L.:Modern Algebra II, Unger, New York, 1950. · Zbl 0037.01903
[28] Wadsworth, A.: The index reduction formula for generic partial splitting varieties, Preprint in preparation. · Zbl 0788.16014
[29] Weil, A.:Adeles and Algebraic Groups, Birkhauser, Boston, 1982. · Zbl 0493.14028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.