zbMATH — the first resource for mathematics

Optimal Hardy-Littlewood inequalities uniformly bounded by a universal constant. (English) Zbl 1410.46027
The original Hardy-Littlewood inequality, published in [G. H. Hardy and J. E. Littlewood, Q. J. Math., Oxf. Ser. 5, 241–254 (1934; JFM 60.0335.01)], relates some \(\ell_{r}\)-norm of the coefficients of a bilinear form on \(\mathbb{C}^{n} \times \mathbb{C}^{n}\) with the supremum on \(B_{\ell_{p}^{n}} \times B_{\ell_{q}^{n}}\). This was later extended to \(m\)-linear forms. This article contributes in this direction. Given \(1 < p_{1}, \ldots , p_{m} \leq \infty\), denote \(\frac{1}{\mathbf{p}} := \frac{1}{p_{1}} + \cdots + \frac{1}{p_{m}}\) (here we use the convention \(\frac{1}{\infty}=0\)). If \(\frac{1}{2} \leq \frac{1}{\mathbf{p}} <1\), then, for every \(n \in \mathbb{N}\) and every \(m\)-linear \(T : \mathbb{C}^{n} \times \cdots \times \mathbb{C}^{n} \to \mathbb{C}\), we have \[ \bigg( \sum_{i_{1}, \dots , i_{m}=1}^{n} | T(e_{i_{1}}, \dots , e_{i_{m}}) |^{\frac{1}{1-\frac{1}{\mathbf{p}}}} \bigg)^{1-\frac{1}{\mathbf{p}}} \leq 2^{(m-1) \big( 1 - \frac{1}{\mathbf{p} }\big)} \sup_{\substack{ {\| x_{j} \|_{p_{j}} < 1}\\ {j=1, \dots ,m}}} | T(x_{1} , \ldots , x_{m}) | . \] Some other similar results, involving mixed sums, are also given.

46G25 (Spaces of) multilinear mappings, polynomials
47H60 Multilinear and polynomial operators
Full Text: DOI
[1] Dahmane Achour, Elhadj Dahia, Pilar Rueda and Enrique A. Sánchez-Pérez. Domination spaces and factorization of linear and multilinear summing operators. Quaest. Math., 39(8):1071-1092, 2016.
[2] Nacib Albuquerque, Frederic Bayart, Daniel Pellegrino and Juan B. Seoane-Sepúlveda. Sharp generalizations of the multilinear Bohnenblust-Hille inequality. J. Funct. Anal., 266(6):3726-3740, 2014. · Zbl 1319.46035
[3] Nacib Albuquerque, Frederic Bayart, Daniel Pellegrino and Juan B. Seoane-Sepúlveda. Optimal Hardy-Littlewood type inequalities for polynomials and multilinear operators. Isr. J. Math., 211(1):197-220, 2016. · Zbl 1342.26040
[4] Nacib Albuquerque and Lisiane Rezende. Anisotropic regularity principle in sequence spaces and applications. , to appear in \(Commun. Contemp. Math.\) · Zbl 1411.46037
[5] Gustavo Araújo and Daniel Pellegrino. On the constants of the Bohnenblust-Hille and Hardy-Littlewood inequalities. Bull. Braz. Math. Soc. (N.S.), 48(1):141-169, 2017. · Zbl 06767894
[6] Gustavo Araújo, Daniel Pellegrino and Diogo Diniz P. da Silva e Silva. On the upper bounds for the constants of the Hardy-Littlewood inequality. J. Funct. Anal., 267(6):1878-1888, 2014. · Zbl 1298.26066
[7] Richard Aron, Daniel Núñez-Alarcón, Daniel Pellegrino and Diana M. Serrano-Rodríguez. Optimal exponents for Hardy-Littlewood inequalities for m-linear operators. Linear Algebra Appl., 531:399-422, 2017. · Zbl 06770622
[8] Frédéric Bayart. Multiple summing maps: Coordinatewise summability, inclusion theorems and \(p\)-Sidon sets. J. Funct. Anal., 274(4):1129-1154, 2018. · Zbl 1391.46057
[9] Frédéric Bayart, Daniel Pellegrino and Juan B. Seoane-Sepúlveda. The Bohr radius of the n-dimensional polydisk is equivalent to \(\sqrt{\frac{\log n}{n}}\). Adv. Math., 264:726-746, 2014. · Zbl 1331.46037
[10] H. Frederic Bohnenblust and Einar Hille. On the absolute convergence of Dirichlet series. Ann. Math., 32(3):600-622, 1931. · JFM 57.0266.05
[11] Qingying Bu and Coenraad C.A. Labuschagne. Positive multiple summing and concave multilinear operators on Banach lattices. Mediterr. J. Math., 12(1):77-87, 2015. · Zbl 1331.46038
[12] Wasthenny Cavalcante. Some applications of the regularity principle in sequence spaces. Positivity, 22(1):191-198, 2018. · Zbl 06861658
[13] Wasthenny Cavalcante and Daniel Núñez-Alarcón. Remarks on an inequality of Hardy and Littlewood. Quaest. Math., 39(8):1101-1113, 2016.
[14] Andreas Defant and Pablo Sevilla-Peris. A new multilinear insight on Littlewood’s 4/3-inequality. J. Funct. Anal., 256(5):1642-1664, 2009. · Zbl 1171.46034
[15] Olvido Delgado and Enrique A. Sánchez-Pérez. Strong extensions for \(q\)-summing operators acting in \(p\)-convex Banach function spaces for \(1 \leq p \leq q\). Positivity, 20(4):999-1014, 2016. · Zbl 1436.46032
[16] Joe Diestel, Hans Jarchow and Andrew Tonge. \(Absolutely summing operators\), volume 43 of \(Cambridge Studies in Advanced Mathematics\). Cambridge University Press, 1995 · Zbl 0855.47016
[17] Verónica Dimant and Pablo Sevilla-Peris. Summation of Coefficients of Polynomials on \(\ell_p\) Spaces. Publ. Mat., Barc., 60(2):289-310, 2016. · Zbl 1378.46032
[18] Godfrey Harold Hardy and John Edensor Littlewood. Bilinear forms bounded in space \(####\)
[19] John Edensor Littlewood. On bounded bilinear forms in an infinite number of variables. Quart. J. Math., 1(1):164-174, 1930. · JFM 56.0335.01
[20] Ashley Montanaro. Some applications of hypercontractive inequalities in quantum information theory. J. Math. Phys., 53(12), 2012. · Zbl 1278.81045
[21] Daniel Pellegrino. The optimal constants of the mixed \((\ell_1, \ell_2)\)-Littlewood inequality. J. Number Theory, 160:11-18, 2016. · Zbl 1431.46024
[22] Daniel Pellegrino, Djair Santos and Joedson Santos. Optimal blow up rate for the constants of Khinchin type inequalities. Quaest. Math., 41(3):303-318, 2018. · Zbl 1391.60008
[23] Daniel Pellegrino, Joedson Santos, Diana M. Serrano-Rodríguez and Eduardo V. Teixeira. A regularity principle in sequence spaces and applications. Bull. Sci. Math., 141(8):802-837, 2017. · Zbl 1404.46041
[24] Daniel Pellegrino and Eduardo V. Teixeira. Towards sharp Bohnenblust-Hille constants. Commun. Contemp. Math., 20(3), 2018. · Zbl 1403.46037
[25] T. Praciano-Pereira. On bounded multilinear forms on a class of \(\ell_p\) spaces. J. Math. Anal. Appl., 81(2):561-568, 1981. Published by the CNRS - UMR 6620 · Zbl 0497.46007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.