# zbMATH — the first resource for mathematics

A regularity principle in sequence spaces and applications. (English) Zbl 1404.46041
The authors prove a rather general regularity principle, from which they deduce several results in different directions: inclusion theorems for multiple summing operators, Grothendieck-type theorems and Hardy-Littlewood inequalities. We emphasise two of them.
On the one hand it is shown that every $$m$$-linear mapping $$T: \ell_{1} \times \cdots \times \ell_{1} \to \ell_{2}$$ is multiple $$(q;p)$$-summing if and only if $$p \leq 2$$ or $$q>p>2$$.
The second result that we emphasise is a version of the Hardy-Littlewood inequality for bilinear forms on $$\ell_{p} \times \ell_{q}$$. Consider $$2 \leq p,q \leq \infty$$ with $$\frac{1}{p} + \frac{1}{q} <1$$ and $$s,t>0$$. There exists a constant $$C>0$$ such that $\bigg( \sum_{i=1}^{n} \bigg( \sum_{j=1}^{n} | T(e_{i}, e_{j}) |^{s} \bigg)^{\frac{t}{s}} \bigg)^{\frac{1}{t}} \leq C \| T \|$ for every $$T : \ell_{p}^{n} \times \ell_{q}^{n} \to \mathbb{K}$$ (note that $$C$$ depends on $$p,q,s,t$$ but not on $$n$$) if and only if the following three conditions are satisfied: $$\frac{q}{q-1} \leq s < \infty$$, $$\frac{pq}{pq-p-q} \leq t < \infty$$ and $$\frac{1}{s} + \frac{1}{t} \leq \frac{3}{2} - \big(\frac{1}{p} + \frac{1}{q} \big)$$.
If these conditions are not satisfied, then the constant $$C$$ in the inequality depends on $$n$$. A careful study is performed, giving the precise asymptotic growth on $$n$$ of the constant for fixed $$p,q,s,t$$.

##### MSC:
 46G25 (Spaces of) multilinear mappings, polynomials 46B45 Banach sequence spaces 47L22 Ideals of polynomials and of multilinear mappings in operator theory
Full Text:
##### References:
 [1] Adams, R.; Fournier, J. J.F., Sobolev spaces, (2003), Academic Press · Zbl 1098.46001 [2] Albuquerque, N.; Bayart, F.; Pellegrino, D.; Seoane-Sepúlveda, J. B., Sharp generalizations of the multilinear Bohnenblust-Hille inequality, J. Funct. Anal., 266, 3726-3740, (2014) · Zbl 1319.46035 [3] Bayart, F., Multiple summing maps: coordinatewise summability, inclusion theorems and p-sidon sets · Zbl 1391.46057 [4] Benedek, A.; Panzone, R., The space $$L_p$$, with mixed norm, Duke Math. J., 28, 3, 301-324, (1961) · Zbl 0107.08902 [5] Bennett, G., Schur multipliers, Duke Math. J., 44, 603-640, (1977) · Zbl 0389.47015 [6] Boas, H.; Khavinson, D., Bohr’s power series theorem in several variables, Proc. Am. Math. Soc., 125, 2975-2979, (1997) · Zbl 0888.32001 [7] Bohnenblust, H. F.; Hille, E., On the absolute convergence of Dirichlet series, Ann. Math. (2), 32, 600-622, (1931) · JFM 57.0266.05 [8] Bombal, F.; Pérez-García, D.; Villanueva, I., Multilinear extensions of Grothendieck’s theorem, Q. J. Math., 55, 4, 441-450, (2004) · Zbl 1078.46030 [9] Botelho, G.; Pellegrino, D., When every multilinear mapping is multiple summing, Math. Nachr., 282, 10, 1414-1422, (2009) · Zbl 1191.46041 [10] Diestel, J.; Fourie, J. H.; Swart, J., The metric theory of tensor products, (2008), American Mathematical Society Providence, RI, Grothendieck’s résumé revisited · Zbl 1186.46004 [11] Diestel, J.; Jarchow, H.; Tonge, A., Absolutely summing operators, (1995), Cambridge University Press · Zbl 0855.47016 [12] Dimant, V.; Sevilla-Peris, P., Summation of coefficients of polynomials on $$\ell_p$$ spaces, Publ. Mat., 60, 289-310, (2016) · Zbl 1378.46032 [13] Garling, D. J.H., Inequalities: A journey into linear analysis, (2007), Cambridge University Press · Zbl 1135.26014 [14] Grothendieck, A., Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo, 8, 1-79, (1953), (in French) [15] Hardy, G.; Littlewood, J. E., Bilinear forms bounded in space $$[p, q]$$, Q. J. Math., 5, 241-254, (1934) · JFM 60.0335.01 [16] Lindenstrauss, J.; Pełczyński, A., Absolutely summing operators in $$\mathcal{L}_p$$-spaces and their applications, Stud. Math., 29, 275-326, (1968) · Zbl 0183.40501 [17] Littlewood, J. E., On bounded bilinear forms in an infinite number of variables, Q. J. Math. Oxford, 1, 164-174, (1930) · JFM 56.0335.01 [18] Matos, M. C., Fully absolutely summing mappings and Hilbert Schmidt operators, Collect. Math., 54, 111-136, (2003) · Zbl 1078.46031 [19] Nehari, Z., On bounded bilinear forms, Ann. Math. (2), 65, 153-162, (1957) · Zbl 0077.10605 [20] Osikiewicz, B.; Tonge, A., An interpolation approach to Hardy-Littlewood inequalities for norms of operators on sequence spaces, Linear Algebra Appl., 331, 1-3, 1-9, (2001) · Zbl 0988.47016 [21] Pellegrino, D.; Santos, J.; Seoane-Sepúlveda, J., Some techniques on nonlinear analysis and applications, Adv. Math., 229, 2, 1235-1265, (2012) · Zbl 1248.47024 [22] Pellegrino, D.; Teixeira, E., Towards sharp Bohnenblust-Hille constants, Commun. Contemp. Math., (2017), in press · Zbl 1403.46037 [23] Pérez-García, D., The inclusion theorem for multiple summing operators, Stud. Math., 165, 3, 275-290, (2004) · Zbl 1064.47057 [24] Pérez-García, D.; Villanueva, I., Multiple summing operators on Banach spaces, J. Math. Anal. Appl., 165, 1, 86-96, (2003) · Zbl 1044.46037 [25] Pérez-García, D.; Villanueva, I., Multiple summing operators on $$C(K)$$ spaces, Ark. Mat., 42, 153-171, (2004) · Zbl 1063.46032 [26] Pisier, G., Grothendieck’s theorem, past and present, Bull. Am. Math. Soc. (N.S.), 49, 237-323, (2012) · Zbl 1244.46006 [27] Praciano-Pereira, T., On bounded multilinear forms on a class of $$\ell_p$$ spaces, J. Math. Anal. Appl., 81, 561-568, (1981) · Zbl 0497.46007 [28] Riesz, M., Sur LES maxima des formes bilinéires et sur LES fonctionnelles lineaires, Acta Math., 49, 465-497, (1926) · JFM 53.0259.03 [29] Schur, J., Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen veränderlichen, J. Reine Angew. Math., 140, 1-28, (1911), (in German) · JFM 42.0367.01 [30] Toeplitz, O., Uber eine bei den dirichletschen reihen auftretende aufgabe aus der theorie der potenzreihen von unendlichvielen veranderlichen, Gött. Nachr., 417-432, (1913) · JFM 44.0405.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.