×

Knowledge-based multi-criteria optimization to support indoor positioning. (English) Zbl 1242.68316

Summary: Indoor position estimation constitutes a central task in home-based assisted living environments. Such environments often rely on a heterogeneous collection of low-cost sensors whose diversity and lack of precision has to be compensated by advanced techniques for localization and tracking. Although there are well established quantitative methods in robotics and neighboring fields for addressing these problems, they lack advanced knowledge representation and reasoning capacities. Such capabilities are not only useful in dealing with heterogeneous and incomplete information but moreover they allow for a better inclusion of semantic information and more general homecare and patient-related knowledge. We address this problem and investigate how state-of-the-art localization and tracking methods can be combined with answer set programming, as a popular knowledge representation and reasoning formalism. We report upon a case-study and provide a first experimental evaluation of knowledge-based position estimation both in a simulated as well as in a real setting.

MSC:

68T30 Knowledge representation
68T27 Logic in artificial intelligence
68T37 Reasoning under uncertainty in the context of artificial intelligence
68N17 Logic programming
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press (2003) · Zbl 1056.68139
[2] Broxton, M., Lifton, J., Paradiso, J.A.: Localization on the pushpin computing sensor network using spectral graph drawing and mesh relaxation. SIGMOBILE MC2R 10, 1–12 (2006)
[3] Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Gringo 2.0 user’s manual. http://potassco.sourceforge.net (2010)
[4] Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) Proceedings of the Twenty-fourth International Conference on Logic Programming (ICLP’08). LNCS, vol. 5366, pp. 190–205. Springer (2008) · Zbl 1185.68159
[5] Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven answer set solver. In: Ninth International Conference on Logic Programming and Nonmonotonic Reasoning, pp. 260–265. Springer (2007) · Zbl 1149.68332
[6] Gebser, M., Schaub, T., Thiele, S.: Gringo: a new grounder for answer set programming. In: LPNMR, pp. 266–271 (2007)
[7] Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping and broadcasting in communication networks. NETWORKS 18, 319–349 (1988) · Zbl 0649.90047 · doi:10.1002/net.3230180406
[8] Kalman, R.E.: A new approach to linear filtering and prediction problems. ASME 82, 35–45 (1960)
[9] Merico, D.: Tracking with high-density, large-scale wireless sensor networks. Ph.D. thesis, University of Milano-Bicocca, Dottorato di ricerca in INFORMATICA, p. 22 (2010-02-03). http://hdl.handle.net/10281/7785
[10] Nakamura, E.F., Loureiro, A.A.F., Frery, A.C.: Information fusion for wireless sensor networks: methods, models, and classifications. ACM Comput. Surv. 39(3), 9 (2007) · doi:10.1145/1267070.1267073
[11] North, M.J., Macal, C.M.: Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation. Oxford University Press, Inc., New York (2007)
[12] Patwari, N., Ash, J., Kyperountas, S., Hero A.O., I., Moses, R., Correal, N.: Locating the nodes: cooperative localization in Wireless Sensor Networks. IEEE Signal Process. Mag. 22(4), 54–69 (2005) · doi:10.1109/MSP.2005.1458287
[13] Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Proceedings of the Second IEEE Workshop on Mobile Computer Systems and Applications, WMCSA ’99, pp. 90–100. IEEE Computer Society, Washington (1999). http://portal.acm.org/citation.cfm?id=520551.837511
[14] Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House (2004) · Zbl 1092.93041
[15] Shen, Y., Win, M.: Fundamental limits of wideband localization; part i: a general framework. IEEE Trans. Inf. Theory 56(10), 4956–4980 (2010). doi: 10.1109/TIT.2010.2060110 · Zbl 1366.94416 · doi:10.1109/TIT.2010.2060110
[16] Shen, Y., Wymeersch, H., Win, M.: Fundamental limits of wideband localization; part ii: Cooperative networks. IEEE Trans. Inf. Theory 56(10), 4981–5000 (2010). doi: 10.1109/TIT.2010.2059720 · Zbl 1366.94417 · doi:10.1109/TIT.2010.2059720
[17] Syrjänen, T.: Lparse 1.0 user’s manual. http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz (2011)
[18] Thrun, S., Fox, D., Burgard, W., Dallaert, F.: Robust monte carlo localization for mobile robots. Artif. Intell. 128(1–2), 99–141 (2001) · Zbl 0971.68162 · doi:10.1016/S0004-3702(01)00069-8
[19] Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press (2005)
[20] Tseng, Y.C., Kuo, S.P., Lee, H.W., Huang, C.F.: Location tracking in a wireless sensor network by mobile agents and its data fusion strategies. IPSN 2634, 554–554 (2003) · Zbl 1027.68962
[21] Verdone, R., Dardari, D., Mazzini, G., Conti, A.: Wireless Sensor and Actuator Networks: Technologies, Analysis and Design. Academic (2008)
[22] Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38, 1–45 (2006) · doi:10.1145/1132952.1132953
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.