zbMATH — the first resource for mathematics

The near shift-invariance of the dual-tree complex wavelet transform revisited. (English) Zbl 1252.42035
Authors’ abstract: The dual-tree complex wavelet transform (DT-CWT) is an enhancement of the conventional discrete wavelet transform (DWT) due to a higher degree of shift-invariance and a greater directional selectivity, finding its applications in signal and image processing. This paper presents a quantitative proof of the superiority of the DT-CWT over the DWT in case of modulated wavelets.

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
Full Text: DOI Link arXiv
[1] Andreopoulos, Y.; Munteanu, A.; Van der Auwera, G.; Schelkens, P.; Cornelis, J., Complete-to-overcomplete discrete wavelet transforms: theory and applications, IEEE trans. signal process., 53, 4, 1398-1412, (2005) · Zbl 1370.94050
[2] Andreopoulos, Y.; Munteanu, A.; Barbarien, J.; Van der Schaar, M.; Cornelis, J.; Schelkens, P., In-band motion compensated temporal filtering, Signal process. image commun., special issue on subband/wavelet interframe video coding, 19, 7, 653-673, (2004)
[3] A.P. Bradley, Shift-invariance in the discrete wavelet transform, in: Proc. VIIth Digital Image Computing: Techniques and Applications, Sydney, 2003.
[4] Chaudhury, K.N.; Unser, M., Construction of Hilbert transform pairs of wavelet bases and Gabor-like transforms, IEEE trans. signal process., 57, 3411-3425, (2009) · Zbl 1391.94169
[5] Chaudhury, K.N.; Unser, M., On the shiftability of dual-tree complex wavelet transforms, IEEE trans. signal process., 58, 221-232, (2010) · Zbl 1391.44005
[6] K.N. Chaudhury, Optimally localized wavelets and smoothing kernels, Swiss Federal Institute of Technology Lausanne, EPFL Thesis No. 4968, February 16, 2011, 239 pp.
[7] Coifman, R.R.; Donoho, D.L., Translation-invariant de-noising, (1995), Springer-Verlag, pp. 125-150 · Zbl 0866.94008
[8] D.L. Donoho, I.M. Johnstone, Threshold selection for wavelet shrinkage of noisy data, in: Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1994, pp. A24-A25.
[9] R.F. Favero, Compound wavelets: wavelets for speech recognition, in: Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 1994, pp. 600-603.
[10] Kingsbury, N.G., Complex wavelets for shift invariant analysis and filtering of signals, Appl. comput. harmon. anal., 10, 3, 234-253, (2001) · Zbl 0990.94005
[11] N.G. Kingsbury, Shift Invariant Properties of the dual-tree complex wavelet transform, in: Proceedings of the Acoustics, Speech, and Signal Processing, 1999, pp. 1221-1224.
[12] Mallat, S., A wavelet tour of signal processing: the sparse way, (2009), Academic Press · Zbl 1170.94003
[13] Ozkaramanli, H.; Yu, R., On the phase condition and its solution for Hilbert transform pairs of wavelet bases, IEEE trans. signal process., 51, 12, 3293-3294, (2003) · Zbl 1369.94254
[14] Pesquet, J.-C.; Krim, H.; Carfantan, H., Time-invariant orthonormal wavelet representations, IEEE trans. signal process., 44, 8, 1964-1970, (1996)
[15] Sari-Sarraf, H.; Brzakovic, D., A shift-invariant discrete wavelet transform, IEEE trans. signal process., 45, 10, 2621-2630, (1997)
[16] Selesnick, I.W., Hilbert transform pairs of wavelet bases, IEEE signal process. lett., 8, 6, 170-173, (2001)
[17] Selesnick, I.W.; Baraniuk, R.G.; Kingsbury, N.G., The dual-tree complex wavelet transform, IEEE signal process. mag., 226, 6, 123-151, (2005)
[18] Simoncelli, E.P.; Freeman, W.T.; Adelson, E.H.; Heeger, D.J., Shiftable multiscale transforms, IEEE trans. inform. theory, 38, 2, 587-607, (1992)
[19] Simoncelli, E.P.; Freeman, W.T., The steerable pyramid: a flexible architecture for multi-scale derivative computation, IEEE int. conf. image process., 3, 444-447, (1995)
[20] Skodras, A.; Christopoulos, C.; Ebrahimi, T., The JPEG 2000 still image compression standard, IEEE signal process. mag., 36-58, (2001) · Zbl 0990.68071
[21] Unser, M.; Blu, T., Fractional splines and wavelets, SIAM rev., 42, 1, 43-67, (2000) · Zbl 0940.41004
[22] Yu, R.; Ozkaramanli, H., Hilbert transform pairs of biorthogonal wavelet bases, IEEE trans. signal process., 54, 6, 2119-2125, (2006) · Zbl 1375.94037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.