×

Inner-model reflection principles. (English) Zbl 1481.03058

Summary: We introduce and consider the inner-model reflection principle, which asserts that whenever a statement \(\varphi (a)\) in the first-order language of set theory is true in the set-theoretic universe \(V\), then it is also true in a proper inner model \(W \subsetneq V\). A stronger principle, the ground-model reflection principle, asserts that any such \(\varphi (a)\) true in \(V\) is also true in some non-trivial ground model of the universe with respect to set forcing. These principles each express a form of width reflection in contrast to the usual height reflection of the Lévy-Montague reflection theorem. They are each equiconsistent with ZFC and indeed \(\Pi_2\)-conservative over ZFC, being forceable by class forcing while preserving any desired rank-initial segment of the universe. Furthermore, the inner-model reflection principle is a consequence of the existence of sufficient large cardinals, and lightface formulations of the reflection principles follow from the maximality principle MP and from the inner-model hypothesis IMH. We also consider some questions concerning the expressibility of the principles.

MSC:

03E45 Inner models, including constructibility, ordinal definability, and core models
03E35 Consistency and independence results
03E55 Large cardinals
03E65 Other set-theoretic hypotheses and axioms
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Antos, C., N. Barton, and S.-D. Friedman, Universism and extensions of \(V\). arXiv:1708.05751. · Zbl 1500.03002
[2] Barton, N., What is the consistency strength of “width reflection”? Mathematics Stack Exchange question, 2016. https://math.stackexchange.com/q/1912624 (version: 2016-09-03).
[3] Caicedo, AE; Veličković, B., The bounded proper forcing axiom and well orderings of the reals, Math. Res. Lett., 13, 2-3, 393-408 (2006) · Zbl 1113.03039 · doi:10.4310/MRL.2006.v13.n3.a5
[4] Friedman, S-D, Internal consistency and the inner model hypothesis, Bull. Symbolic Logic, 12, 4, 591-600 (2006) · Zbl 1134.03029 · doi:10.2178/bsl/1164056808
[5] Fuchs, G.; Hamkins, JD; Reitz, J., Set-theoretic geology, Annals of Pure and Applied Logic, 166, 4, 464-501 (2015) · Zbl 1348.03051 · doi:10.1016/j.apal.2014.11.004
[6] Fuchs, G.; Schindler, R., Inner model theoretic geology, Journal of Symbolic Logic, 81, 3, 972-996 (2016) · Zbl 1403.03106 · doi:10.1017/jsl.2015.64
[7] Gitman, V., J. D. Hamkins, P. Holy, P. Schlicht, and K. Williams, The exact strength of the class forcing theorem. arXiv:1707.03700. · Zbl 1485.03216
[8] Hamkins, JD, The lottery preparation, Ann. Pure Appl. Logic, 101, 2-3, 103-146 (2000) · Zbl 0949.03045 · doi:10.1016/S0168-0072(99)00010-X
[9] Hamkins, JD, A simple maximality principle, J. Symbolic Logic, 68, 2, 527-550 (2003) · Zbl 1056.03028 · doi:10.2178/jsl/1052669062
[10] Hamkins, JD, The Ground Axiom, Mathematisches Forschungsinstitut Oberwolfach Report, 55, 3160-3162 (2005)
[11] Hamkins, J. D., Forcing and large cardinals. Book manuscript in preparation.
[12] Hamkins, JD; Löwe, B., Moving up and down in the generic multiverse, Logic and its Applications, ICLA 2013 LNCS, 7750, 139-147 (2013) · Zbl 1303.03078
[13] Hamkins, J. D., and J. Reitz, The set-theoretic universe \(V\) is not necessarily a class-forcing extension of HOD. arXiv:1709.06062
[14] Hamkins, JD; Reitz, J.; Woodin, WH, The ground axiom is consistent with \(V\ne{\rm HOD} \), Proc. Amer. Math. Soc, 136, 8, 2943-2949 (2008) · Zbl 1145.03029 · doi:10.1090/S0002-9939-08-09285-X
[15] Jech, T., Set Theory. Springer Monographs in Mathematics, 3rd edition, 2003. · Zbl 1007.03002
[16] Jensen, R.; Steel, J., \(K\) without the measurable, J. Symbolic Logic, 78, 3, 708-734 (2013) · Zbl 1348.03049 · doi:10.2178/jsl.7803020
[17] Larson, P., Separating stationary reflection principles, J. Symbolic Logic, 65, 1, 247-258 (2000) · Zbl 0945.03076 · doi:10.2307/2586534
[18] Mitchell, W. J., Inner models for large cardinals. In Sets and extensions in the twentieth century, vol. 6 of Handb. Hist. Log., Elsevier/North-Holland, Amsterdam, 2012, pp. 415-456. · Zbl 1255.03012
[19] Reitz, J., The Ground Axiom. PhD thesis, The Graduate Center of the City University of New York, September 2006. · Zbl 1135.03018
[20] Reitz, J., The ground axiom, J. Symbolic Logic, 72, 4, 1299-1317 (2007) · Zbl 1135.03018 · doi:10.2178/jsl/1203350787
[21] Sargsyan, G.; Schindler, R., Varsovian models I, J. Symb. Log., 83, 2, 496-528 (2018) · Zbl 1522.03227 · doi:10.1017/jsl.2018.5
[22] Schindler, R.; Steel, J., The self-iterability of \(L[E]\), Journal of Symbolic Logic, 74, 3, 751-779 (2009) · Zbl 1178.03067 · doi:10.2178/jsl/1245158084
[23] Schlutzenberg, F., The definability of \(\mathbb{E}\) in self-iterable mice. arXiv:1412.0085. · Zbl 1282.03022
[24] Stavi, J., and J. Väänänen, Reflection principles for the continuum. In Logic and algebra, vol. 302 of Contemp. Math., Amer. Math. Soc., Providence, RI, 2002, pp. 59-84. · Zbl 1013.03059
[25] Usuba, T., The downward directed grounds hypothesis and very large cardinals. J. Math. Log. 17(2), 1750009, 24 pp., 2017. · Zbl 1423.03191
[26] Vickers, J.; Welch, PD, On elementary embeddings from an inner model to the universe, J. Symbolic Logic, 66, 3, 1090-1116 (2001) · Zbl 1025.03049 · doi:10.2307/2695094
[27] Welch, PD, On unfoldable cardinals, \( \omega \)-closed cardinals, and the beginning of the inner model hierarchy, Arch. Math. Logic, 43, 4, 443-458 (2004) · Zbl 1058.03053 · doi:10.1007/s00153-003-0199-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.