×

Finite deformations of a carbon black-filled rubber. Experiment, optical measurement and material parameter identification using finite elements. (English) Zbl 1032.74502

Summary: The identification of material parameters occurring in constitutive equations frequently plays a more minor role in large deformations in view of the difficulties encountered when endeavouring to perform specified deformations by means of experiments. This article aims to illustrate special optical measurements obtained with the help of a CCD camera applied to tensile and compression tests, to allow a larger number of measured quantities to be incorporated into the material parameter identification process. Based on these inhomogeneous deformations, we propose an identification procedure founded on a gradient-free optimisation technique which incorporates the finite element method while also taking account of inequality constraints. The finite element method is employed to obtain a numerical solution of the underlying boundary-value problem, which has to be compared with the experimental data pertaining to carbon black-filled rubber in the sense of the least-square method. The proposed procedure is independent of the underlying finite-element programme and is being investigated from the point of view of its performance.

MSC:

74-05 Experimental work for problems pertaining to mechanics of deformable solids
74G75 Inverse problems in equilibrium solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74B20 Nonlinear elasticity
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amin, A.; Alam, M.; Okui, Y., An improved hyperelasticity relation in modeling viscoelasticity response of natural and high damping rubbers in compression: experiments, parameter identification and numerical verification, Mech. Mater., 34, 72-95 (2002)
[2] Andresen, K.; Dannemeyer, S.; Friebe, H.; Mahnken, R.; Ritter, R.; Stein, E., Parameteridentifikation für ein plastisches Stoffgesetz mit FE-Methoden und Rasterverfahren, Bauingenieur, 71, 21-31 (1996)
[3] Baker, M.; Ericksen, J., Inequalities restricting the form of the stress-deformation relations for isotropic elastic solids and Reiner-Rivlin fluids, J. Washington Acad. Sci., 44, 33-35 (1954)
[4] Bertram, A.; Han, J.; Olschewski, J.; Sockel, H.-G., Identification of elastic constants and orientation of single crystals by resonance measurements and FE analysis, Int. J. Comput. Appl. Technol., 7, 284-291 (1994)
[5] Chevalier, L.; Calloch, S.; Hild, F.; Marco, Y., Digital image correlation used to analyze the multiaxial behaviour of rubber-like materials, Eur. J. Mech. A Solids, 20, 169-187 (2001) · Zbl 1168.74300
[6] Gelin, J.-C.; Ghouati, O., An inverse solution procedure for material parameters identification in large plastic deformations, Comm. Numer. Methods Engrg., 12, 161-173 (1996) · Zbl 0853.73028
[7] Hartmann, S., Numerical studies on the identification of the material parameters of Rivlin’s hyperelasticity using tension-torsion tests, Acta Mech., 148, 129-155 (2001) · Zbl 0996.74012
[8] Hartmann, S., Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions, Int. J. Solids Structures, 38, 44-45, 7999-8018 (2001) · Zbl 1032.74014
[9] Hartmann, S., Computation in finite strain viscoelasticity: finite elements based on the interpretation as differential-algebraic equations, Comput. Methods Appl. Mech. Engrg., 191, 13-14, 1439-1470 (2002) · Zbl 1098.74694
[10] Hartmann, S.; Haupt, P.; Tschöpe, T., Parameter identification with a direct search method using finite elements, (Besdo, D.; Schuster, R.; Ihlemann, J., Constitutive Models of Rubber II (2001), Balkema: Balkema Lisse), 249-256
[11] Haupt, P., Continuum Mechanics and Theory of Materials (2000), Springer-Verlag: Springer-Verlag Berlin
[12] Haupt, P.; Lion, A., Experimental identification and mathematical modelling of viscoplastic material behavior, J. Continuum Mech. Thermodynam., 7, 73-96 (1995)
[13] Haupt, P.; Sedlan, K., Viscoplasticity of elastomeric materials, experimental facts and constitutive modelling, Arch. Appl. Mech., 71, 89-109 (2001) · Zbl 1007.74027
[14] Holzapfel, G., Nonlinear Solid Mechanics (2000), Wiley: Wiley Chichester
[15] James, A.; Green, A.; Simpson, G., Strain energy functions of rubber. I. Characterization of gum vulcanizates, J. Appl. Polymer Sci., 19, 2033-2058 (1975)
[16] Kreißig, R., Auswertung inhomogener Verschiebungsfelder zur Identifikation der Parameter elastisch-plastischer Deformationsgesetze, Forschung im Ingenieurwesen, 64, 99-109 (1998)
[17] Lion, A., A constitutive model for black filled rubber, experimental investigations and mathematical representations, J. Continuum Mech. Thermodynam., 8, 153-169 (1996)
[18] Mahnken, R.; Stein, E., A unified approach for parameter identification of inelastic material models in the frame of the finite element method, Comput. Methods Appl. Mech. Engrg., 136, 225-258 (1996) · Zbl 0921.73143
[19] Mahnken, R.; Stein, E., Parameter identification for finite deformation elastoplasticity in principal directions, Comput. Methods Appl. Mech. Engrg., 147, 17-39 (1997) · Zbl 0896.73024
[20] Pavlidis, T., Algorithmen zur Grafik und Bildverarbeitung (1990), Heise: Heise Hannover
[21] Powell, M., A direct search optimization method that models the objective and constraint functions by linear interpolations, (Gomez, S.; Hennart, J., Advances in Optimization and Numerical Analysis (1994), Kluwer Academic: Kluwer Academic Dordrecht), 51-67 · Zbl 0826.90108
[22] Powell, M., Direct search algorithms for optimization calculations, Acta Numer., 7, 287-336 (1998), See: http://plato.la.asu.edu/topics/problems/nlores.html/ · Zbl 0911.65050
[23] Rivlin, R.; Saunders, D., Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber, Philos. Trans. Roy. Soc. London Ser. A, 243, 251-288 (1951) · Zbl 0042.42505
[24] Scheday, G.; Miehe, C., Parameteridentifikation finiter Elastizität bei inhomogenen Deformationen, Z. Angew. Math. Mech. Suppl., 81, 2, S425-S426 (2001) · Zbl 0980.74502
[25] Truesdell, C.; Noll, W., The Non-Linear Field Theories of Mechanics. The Non-Linear Field Theories of Mechanics, Encyclopedia of Physics, III/3 (1965), Springer-Verlag: Springer-Verlag Berlin · Zbl 0779.73004
[26] Tschöpe, T., 2001. Parameteridentifikation hyperelastischer Werkstoffe unter Verwendung der Methode der finiten Elemente. Master’s thesis. Institute of Mechanics, University of Kassel. Report No. 11/2001; Tschöpe, T., 2001. Parameteridentifikation hyperelastischer Werkstoffe unter Verwendung der Methode der finiten Elemente. Master’s thesis. Institute of Mechanics, University of Kassel. Report No. 11/2001
[27] Wang, C.-C.; Truesdell, C., Introduction of Rational Elasticity (1973), Noordhoff: Noordhoff Leyden · Zbl 0308.73001
[28] WEB-page, 2001. http://plato.la.asu.edu/topics/problems/nlores.html; WEB-page, 2001. http://plato.la.asu.edu/topics/problems/nlores.html
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.