×

Simulation of flow in deformable fractures using a quasi-Newton based partitioned coupling approach. (English) Zbl 1484.74021

Summary: We introduce a partitioned coupling approach for iterative coupling of flow processes in deformable fractures embedded in a poro-elastic medium that is enhanced by interface quasi-Newton (IQN) methods. In this scope, a unique computational decomposition into a fracture flow and a poro-elastic domain is developed, where communication and numerical coupling of the individual solvers are realized by consulting the open-source library preCICE. The underlying physical problem is introduced by a brief derivation of the governing equations and interface conditions of fracture flow and poro-elastic domain followed by a detailed discussion of the partitioned coupling scheme. We evaluate the proposed implementation and undertake a convergence study to compare a classical interface quasi-Newton inverse least-squares (IQN-ILS) with the more advanced interface quasi-Newton inverse multi-vector Jacobian (IQN-IMVJ) method. These coupling approaches are verified for an academic test case before the generality of the proposed strategy is demonstrated by simulations of two complex fracture networks. In contrast to the development of specific solvers, we promote the simplicity and computational efficiency of the proposed partitioned coupling approach using preCICE and FEniCS for parallel computations of hydro-mechanical processes in complex, three-dimensional fracture networks.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76S05 Flows in porous media; filtration; seepage
86A05 Hydrology, hydrography, oceanography
90C53 Methods of quasi-Newton type
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, B. C., Ring, J., Rognes, M. E., Wells, G. N.: The FEniCS Project Version 1.5. Arch. Numer. Softw. 3.100 (2015)
[2] Batchelor, G. K.: An introduction to fluid dynamics. Cambridge mathematical library. Cambridge University Press (2000)
[3] Belytschko, T., Liu, W. K., Moran, B., Elkhodary, K.: Nonlinear finite elements for continua and structures. Wiley (2013) · Zbl 1279.74002
[4] Berge, R. L., Berre, I., Keilegavlen, E., Nordbotten, J. M., Wohlmuth, B.: Finite Volume Discretization for Poroelastic Media with Fractures Modeled by Contact Mechanics. Int. J. Numer. Methods Eng. 121.4, 644-663 (2020)
[5] Bogaers, AEJ; Kok, S.; Reddy, BD; Franz, T., Quasi-Newton methods for implicit black-box FSI coupling, Computer Methods in Applied Mechanics and Engineering, 279, 113-132 (2014) · Zbl 1423.74259 · doi:10.1016/j.cma.2014.06.033
[6] Biot, M. A.: General Theory of Three-Dimensional Consolidation. J. Appl. Phys. 12.2, 155-164 (1941) · JFM 67.0837.01
[7] Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. vol. 15. Springer Science & Business Media (2012) · Zbl 0788.73002
[8] Buis, S., Piacentini, A., Déclat, D.: PALM: A Computational Framework for Assembling Highperformance Computing Applications. Concurr. Comput. Practice Exper. 18.2, 231-245 (2006)
[9] Bungartz, H. -J., Lindner, F., Gatzhammer, B., Mehl, M., Scheufele, K., Shukaev, A., Uekermann, B.: PreCICE - A Fully Parallel Library for Multi-Physics Surface Coupling. Comput. Fluids, vol. 141. Advances in Fluid- Structure Interaction, pp. 250-258 (2016) · Zbl 1390.76004
[10] Castelletto, N., White, J. A., Tchelepi, H. A.: Accuracy and Convergence Properties of the Fixed-Stress Iterative Solution of Two-Way Coupled Poromechanics. Int. J Numer. Anal. Methods Geomechan. 39.14, 1593-1618 (2015)
[11] Degroote, J.; Bruggeman, P.; Haelterman, R.; Vierendeels, J., Stability of a coupling technique for partitioned solvers in FSI applications, Computers & Structures, 86, 23, 2224-2234 (2008) · doi:10.1016/j.compstruc.2008.05.005
[12] Degroote, J.; Haelterman, R.; Annerel, S.; Bruggeman, P.; Vierendeels, J., Performance of partitioned procedures in fluid-structure interaction, Computers & Structures, 88, 7, 446-457 (2010) · doi:10.1016/j.compstruc.2009.12.006
[13] Deparis, S.; Discacciati, M.; Fourestey, G.; Quarteroni, A., Fluid-structure algorithms based on Steklov-Poincaré operators, Computer Methods in Applied Mechanics and Engineering, 195, 41, 5797-5812 (2006) · Zbl 1124.76026 · doi:10.1016/j.cma.2005.09.029
[14] Farhat, C.: CFD-Based Nonlinear Computational Aeroelasticity. In: Encyclopedia of Computational Mechanics. doi:10.1002/0470091355.ecm063. John Wiley & Sons (2004), https://doi.org/10.1002/0470091355.ecm063
[15] Fetter, C.: Applied Hydrogeology. 4th edn. Prentice Hall (2001)
[16] Gassmann, F.: Über Die Elastizität Poröser Medien. Vierteljahrsschrift Naturforsch. Gesellschaft Zürich 96, 1-23 (1951) · Zbl 0044.21002
[17] Gellasch, C. A., Wang, H. F., Bradbury, K. R., Bahr, J. M., Lande, L. L.: Reverse Water- Level Fluctuations Associated with Fracture Connectivity. Groundwater 52.1, 105-117 (2014)
[18] Girault, V., Wheeler, M. F., Ganis, B., Mear, M. E.: A Lubrication Fracture Model in a Poro-Elastic Medium. Math. Models Methods Appl. Sci. 25.04, 587-645 (2015) · Zbl 1309.76194
[19] Girault, V., Kumar, K., Wheeler, M. F.: Convergence of Iterative Coupling of Geomechanics with Ow in a Fractured Poroelastic Medium. Comput. Geosci. 20.5, 997-1011 (2016) · Zbl 1391.76650
[20] Haelterman, R.; Degroote, J.; Van Heule, D.; Vierendeels, J., The Quasi-Newton Least Squares Method: A new and fast secant method analyzed for linear systems, SIAM Journal on Numerical Analysis, 47, 3, 2347-2368 (2009) · Zbl 1197.65041 · doi:10.1137/070710469
[21] Jaust, A., Schmidt, P.: Replication Data for Simulation of ow in deformable fractures using a quasi-Newton based partitioned coupling approach. Version V1 (2021)
[22] Jin, L., Zoback, M. D.: Fully Coupled Nonlinear Fluid Ow and Poroelasticity in Arbitrarily Fractured Porous Media: a Hybrid-Dimensional Computational Model. J. Geophys. Res. Solid Earth 122.10, 7626-7658 (2017)
[23] Joppich, W., Kürschner, M.: MpCCI — a tool for the simulation of coupled applications. Concurr. Comput. Practice Exper. 18.2, 183-192 (2006)
[24] Kataoka, S., Minami, S., Kawai, H., Yamada, T., Yoshimura, S.: A Parallel Iterative Partitioned Coupling Analysis System for Large-Scale Acoustic Fluid-Structure Interactions. Comput. Mech. 53.6, 1299-1310 (2014) · Zbl 1311.74040
[25] Keilegavlen, E., Berge, R., Fumagalli, A., Starnoni, M., Stefansson, I., Varela, J., Berre, I.: PorePy: An Open-Source Simulation Tool for Flow and Transport in Deformable Fractured Rocks. Comput. Geosci. 25.1, 243-265 (2021) · Zbl 1453.86001
[26] Kim, J., Tchelepi, H., Juanes, R.: Stability and Convergence of Sequential Methods for Coupled Ow and Geomechanics: Drained and Undrained Splits. Comput. Methods Appl. Mech. Eng. 200.23, 2094-2116 (2011) · Zbl 1228.74106
[27] Kim, J., Tchelepi, H., Juanes, R.: Stability and Convergence of Sequential Methods for Coupled Ow and Geomechanics: Fixed-Stress and Fixed-Strain Splits. Comput. Methods Appl. Mech. Eng. 200.13, 1591-1606 (2011) · Zbl 1228.74101
[28] Küttler, U.; Wall, W., Fixed-point fluid-structure interaction solvers with dynamic relaxation, Computational Mechanics, 43, 61-72 (2008) · Zbl 1236.74284 · doi:10.1007/s00466-008-0255-5
[29] Lindner, F.: Data transfer in partitioned multiphysics simulations : interpolation & communication. PhD thesis University of Stuttgart (2019)
[30] Lindner, F., Mehl, M., Uekermann, B.: Radial basis function interpolation for Black-Box Multi-Physics simulations. In: Conference Proceedings at the ECCOMAS Coupled Problems (2017)
[31] Lindner, F., Totounferoush, A., Mehl, M., Uekermann, B., Pour, N. E., Krupp, V., Roller, S., Reimann, T., Sternel, D. C., Egawa, R., Takizawa, H., Simonis, F.: ExaFSA Parallel Fluid- Structure-Acoustic Simulation. Software for Exascale Computing - SPPEXA 2016-2019. In: Bungartz, H.-J., Reiz, S., Uekermann, B., Neumann, P., Nagel, W. E. (eds.) , pp 271-300. Springer International Publishing, Cham (2020)
[32] Louis, C.: A study of groundwater ow in jointed rock and its in uence on the stability of rock masses. Imperial College. Rock Mech. Res. Rep. 10, 1-90 (1969)
[33] Mavko, G., Mukerji, T., Dvorkin, J.: The rock physics handbook: Tools for seismic analysis of porous media. Cambridge University Press (2009)
[34] Monge, A.; Birken, P., On the convergence rate of the Dirichlet-Neumann iteration for unsteady thermal fluid-structure interaction, Computational Mechanics, 62, 3, 525-541 (2018) · Zbl 1460.74081 · doi:10.1007/s00466-017-1511-3
[35] Muskat, M.: The Ow of Homogeneous Fluids through Porous Media. Soil Sci. 46.2, 169 (1938)
[36] Ortiz, A. E.R., Renner, J., Jung, R.: Hydromechanical analyses of the hydraulic stimulation of borehole Basel 1. Geophys. J. Int. 185.3, 1266-1287 (2011)
[37] Quintal, B., Caspari, E., Holliger, K., Steeb, H.: Numerically quantifying energy loss caused by squirt ow. Geophys. Prospect. 67.8, pp. 2196-2212 (2019)
[38] Renner, J., Steeb, H.: Modeling of Fluid Transport in Geothermal Research. Handbook of Geomathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1443-1500 (2015)
[39] Renshaw, C. E.: On the Relationship between Mechanical and Hydraulic Apertures in Rough-Walled Fractures. J. Geophys Res. Solid Earth 100.B12, 24629-24636 (1995)
[40] Rodenberg, B., Desai, I., Hertrich, R., Jaust, A., Uekermann, B.: FEniCS-preCICE: Coupling FEniCS to other Simulation Software (2021)
[41] Scheufele, K.; Mehl, M., Robust Multisecant Quasi-Newton Variants for Parallel Fluid-Structure Simulations—and Other Multiphysics Applications, SIAM Journal on Scientific Computing, 39, 5, S404-S433 (2017) · Zbl 06799795 · doi:10.1137/16M1082020
[42] Schmidt, P., Dutler, N., Steeb, H.: Importance of Fracture Deformation throughout Hydraulic Testing under In-Situ Conditions. Geophys. J. Int. (2021)
[43] Schmidt, P., Steeb, H.: Numerical Aspects of Hydro-Mechanical Coupling of Fluid-Filled Fractures Using Hybrid-Dimensional Element Formulations and Non-Conformal Meshes. GEM - Int. J. Geomathematics 10.1, 14 (2019) · Zbl 1419.86001
[44] Schmidt, P., Steeb, H., Renner, J.: Investigations into the Opening of Fractures during Hydraulic Testing Using a Hybrid-Dimensional Ow Formulation. Environ. Earth Sci. 80.497 (2021)
[45] Segura, J. M., double, I. Carol.: Coupled HM Analysis Using Zero-Thickness Interface Elements with Nodes—Part II: Verification and Application. Int. J. Numer. Anal. Methods Geomech. 32.18, 2103-2123 (2008) · Zbl 1273.74547
[46] Segura, J. M.: Coupled HM analysis using zero-thickness interface elements with double nodes—Part II: Verification and application. Int. J. Numer. Anal. Methods Geomech. 32.18, 2083-2101 (2008) · Zbl 1273.74546
[47] Settgast, R. R., Fu, P., Walsh, S. D., White, J. A., Annavarapu, C., Ryerson, F. J.: A Fully Coupled Method for Massively Parallel Simulation of Hydraulically Driven Fractures in 3-Dimensions. Int. J. Numer. Anal. Methods Geomech. 41.5, 627-653 (2017)
[48] Slack, T. Z., Murdoch, L. C., Germanovich, L. N., Hisz, D. B.: Reverse Water-Level Change during Interference Slug Tests in Fractured Rock. Water Resour. Res. 49.3, 1552-1567 (2013)
[49] Slattery, S. R., Wilson, P. P. H., Pawlowski, R. P.: The Data Transfer Kit: A geometric rendezvous-based tool for multiphysics data transfer. In: Proceedings of the 2013 International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering - M and C 2013 (2013)
[50] Steeb, H., Renner, J.: Mechanics of Poroelastic Media a Review with Emphasis on Foundational State Variables. Transport Porous Media 130, 437-461 (2019)
[51] Uekermann, B.: Partitioned Fluid-Structure Interaction on Massively Parallel Systems. Institut für Informatik, Technische Universität München. https://doi.org/https://mediatum.ub.tum.de/doc/1320661/document.pdf. doi:10.14459/2016md1320661 (2016)
[52] Vinci, C., Renner, J., Steeb, H.: A Hybriddimensional Approach for an Efficient Numerical Modeling of the Hydro-Mechanics of Fractures. Water Resour. Res. 50.2, 1616-1635 (2014)
[53] Vinci, C., Steeb, H., Renner, J.: The Imprint of Hydro-Mechanics of Fractures in Periodic Pumping Tests. Geophys. J. Int. 202.3, 1613-1626 (2015)
[54] Wang, H. F.: Theory of linear poroelasticity. Princeton University Press Princeton & Oxford (2000)
[55] Widlund, O., Toselli, A.: Domain Decomposition Methods - Algorithms and Theory. English (US). Computational Mathematics, vol. 34. Springer (2004) · Zbl 1069.65138
[56] Witherspoon, P. A., Wang, J. S. Y., Iwai, K., Gale, J. E.: Validity of Cubic Law for Fluid Ow in a Deformable Rock Fracture. Water Resour. Res. 16.6, 1016-1024 (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.