Schütz, L.; Ziebell, J. S.; Zingano, J. P.; Zingano, P. R. A new proof of a fundamental supnorm estimate for one-dimensional advection-diffusion equations. (English) Zbl 1372.35149 Adv. Differ. Equ. Control Process. 11, No. 1, 41-51 (2013). Summary: We give a short derivation of supnorm estimates for solutions of one-dimensional advection-diffusion equations \[ u_t+f(u)_=u_{xx},\qquad x\in\mathbb R,\;t>0 \] and some of their generalizations, assuming initial data \(u(\cdot,0)\in L^p (\mathbb R)\cap L^\infty (\mathbb R)\) for some \(1\leq p<\infty\). A few related results and open questions are also given. MSC: 35K57 Reaction-diffusion equations 35K59 Quasilinear parabolic equations 35B40 Asymptotic behavior of solutions to PDEs 35B45 A priori estimates in context of PDEs Keywords:advection-diffusion equations; initial-value problem; energy method; heterogeneous media; forced advection; supnorm estimates; large time behavior PDF BibTeX XML Cite \textit{L. Schütz} et al., Adv. Differ. Equ. Control Process. 11, No. 1, 41--51 (2013; Zbl 1372.35149) Full Text: Link